Cadences#
Show imports
import os
from collections import defaultdict, Counter
from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from utils import STD_LAYOUT, CADENCE_COLORS, color_background, value_count_df, get_repo_name, print_heading, resolve_dir
Show source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------
CORPUS_PATH: '/home/runner/work/workflow_deployment/medtner_tales'
Show source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------
Data repo 'medtner_tales' @ adb6f24
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
---------------------------------------------------------------------------
DeprecationWarning Traceback (most recent call last)
Cell In[5], line 3
1 annotated_view = dataset.data.get_view('annotated')
2 annotated_view.include('facets', 'expanded')
----> 3 annotated_view.fnames_with_incomplete_facets = False
4 dataset.data.set_view(annotated_view)
5 dataset.data.parse_tsv(choose='auto')
File ~/.local/lib/python3.10/site-packages/ms3/view.py:124, in View.fnames_with_incomplete_facets(self, value)
122 @fnames_with_incomplete_facets.setter
123 def fnames_with_incomplete_facets(self, value):
--> 124 raise DeprecationWarning(
125 "'fnames_with_incomplete_facets' was renamed to 'pieces_with_incomplete_facets' in "
126 "ms3 v2."
127 )
DeprecationWarning: 'fnames_with_incomplete_facets' was renamed to 'pieces_with_incomplete_facets' in ms3 v2.
Metadata#
all_metadata = dataset.data.metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
print(f"Concatenated 'metadata.tsv' files cover {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:,:20]
All annotation labels from the selected pieces#
all_labels = dataset.data.get_facet('expanded')
print(f"{len(all_labels.index)} hand-annotated harmony labels:")
all_labels.iloc[:20].style.apply(color_background, subset="chord")
Filtering out pieces without cadence annotations#
hascadence = dc.HasCadenceAnnotationsFilter().process_data(dataset)
assert () in hascadence.indices and len(hascadence.indices[()]) > 0, "No cadences found."
print(f"Before: {len(dataset.indices[()])} pieces; after removing those without cadence labels: {len(hascadence.indices[()])}")
Show corpora containing pieces with cadence annotations#
grouped_by_corpus = dc.CorpusGrouper().process_data(hascadence)
corpora = {group[0]: f"{len(ixs)} pieces" for group, ixs in grouped_by_corpus.indices.items()}
print(f"{len(corpora)} corpora with {sum(map(len, grouped_by_corpus.indices.values()))} pieces containing cadence annotations:")
corpora
All annotation labels from the selected pieces#
all_labels = hascadence.get_facet('expanded')
print(f"{len(all_labels.index)} hand-annotated harmony labels:")
all_labels.iloc[:10, 13:].style.apply(color_background, subset="chord")
Metadata#
dataset_metadata = hascadence.data.metadata()
hascadence_metadata = dataset_metadata.loc[hascadence.indices[()]]
hascadence_metadata.index.rename('dataset', level=0, inplace=True)
hascadence_metadata.head()
mean_composition_years = hascadence_metadata.groupby(level=0).composed_end.mean().astype(int).sort_values()
chronological_order = mean_composition_years.index.to_list()
bar_data = pd.concat([mean_composition_years.rename('year'),
hascadence_metadata.groupby(level='dataset').size().rename('pieces')],
axis=1
).reset_index()
fig = px.bar(bar_data, x='year', y='pieces', color='dataset', title='Pieces contained in the dataset')
fig.update_traces(width=5)
Overall#
PAC: Perfect Authentic Cadence
IAC: Imperfect Authentic Cadence
HC: Half Cadence
DC: Deceptive Cadence
EC: Evaded Cadence
PC: Plagal Cadence
print(f"{all_labels.cadence.notna().sum()} cadence labels.")
value_count_df(all_labels.cadence)
px.pie(all_labels[all_labels.cadence.notna()], names="cadence", color="cadence", color_discrete_map=CADENCE_COLORS)
Per dataset#
cadence_count_per_dataset = all_labels.groupby("corpus").cadence.value_counts()
cadence_fraction_per_dataset = cadence_count_per_dataset / cadence_count_per_dataset.groupby(level=0).sum()
px.bar(cadence_fraction_per_dataset.rename('count').reset_index(), x='corpus', y='count', color='cadence',
color_discrete_map=CADENCE_COLORS, category_orders=dict(dataset=chronological_order))
fig = px.pie(cadence_count_per_dataset.rename('count').reset_index(), names='cadence', color='cadence', values='count',
facet_col='corpus', facet_col_wrap=4, height=2000, color_discrete_map=CADENCE_COLORS)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**STD_LAYOUT)
Per phrase#
Number of cadences per phrase#
segmented = dc.PhraseSlicer().process_data(grouped_by_corpus)
phrases = segmented.get_slice_info()
phrase_segments = segmented.get_facet("expanded")
phrase_gpb = phrase_segments.groupby(level=[0,1,2])
local_keys_per_phrase = phrase_gpb.localkey.unique().map(tuple)
n_local_keys_per_phrase = local_keys_per_phrase.map(len)
phrases_with_keys = pd.concat([n_local_keys_per_phrase.rename('n_local_keys'),
local_keys_per_phrase.rename('local_keys'),
phrases], axis=1)
phrases_with_cadences = pd.concat([
phrase_gpb.cadence.nunique().rename('n_cadences'),
phrase_gpb.cadence.unique().rename('cadences').map(lambda l: tuple(e for e in l if not pd.isnull(e))),
phrases_with_keys
], axis=1)
value_count_df(phrases_with_cadences.n_cadences, counts="#phrases")
n_cad = phrases_with_cadences.groupby(level='corpus').n_cadences.value_counts().rename('counts').reset_index().sort_values('n_cadences')
n_cad.n_cadences = n_cad.n_cadences.astype(str)
fig = px.bar(n_cad, x='corpus', y='counts', color='n_cadences', height=800, barmode='group',
labels=dict(n_cadences="#cadences in a phrase"),
category_orders=dict(dataset=chronological_order)
)
fig.show()
Combinations of cadence types for phrases with more than one cadence#
value_count_df(phrases_with_cadences[phrases_with_cadences.n_cadences > 1].cadences)
Positioning of cadences within phrases#
df_rows = []
y_position = 0
for ix in phrases_with_cadences[phrases_with_cadences.n_cadences > 0].sort_values('duration_qb').index:
df = phrase_segments.loc[ix]
description = str(ix)
if df.cadence.notna().any():
interval = ix[2]
df_rows.append((y_position, interval.length, "end of phrase", description))
start_pos = interval.left
cadences = df.loc[df.cadence.notna(), ['quarterbeats', 'cadence']]
cadences.quarterbeats -= start_pos
for cadence_x, cadence_type in cadences.itertuples(index=False, name=None):
df_rows.append((y_position, cadence_x, cadence_type, description))
y_position += 1
#else:
# df_rows.append((y_position, pd.NA, pd.NA, description))
data = pd.DataFrame(df_rows, columns=["phrase_ix", "x", "marker", "description"])
fig = px.scatter(data[data.x.notna()], x='x', y="phrase_ix", color="marker", hover_name="description", height=3000,
labels=dict(marker='legend'), color_discrete_map=CADENCE_COLORS)
fig.update_traces(marker_size=5)
fig.update_yaxes(autorange="reversed")
fig.show()
Cadence ultima#
phrase_segments = segmented.get_facet("expanded")
cadence_selector = phrase_segments.cadence.notna()
missing_chord_selector = phrase_segments.chord.isna()
cadence_with_missing_chord_selector = cadence_selector & missing_chord_selector
missing = phrase_segments[cadence_with_missing_chord_selector]
expanded = ms3.expand_dcml.expand_labels(phrase_segments[cadence_with_missing_chord_selector], propagate=False, chord_tones=True, skip_checks=True)
phrase_segments.loc[cadence_with_missing_chord_selector] = expanded
print(f"Ultima harmony missing for {(phrase_segments.cadence.notna() & phrase_segments.bass_note.isna()).sum()} cadence labels.")
Ultimae as Roman numeral#
def highlight(row, color="#ffffb3"):
if row.counts < 10:
return [None, None, None, None]
else:
return ["background-color: {color};"] * 4
cadence_counts = all_labels.cadence.value_counts()
ultima_root = phrase_segments.groupby(['localkey_is_minor', 'cadence']).numeral.value_counts().rename('counts').to_frame().reset_index()
ultima_root.localkey_is_minor = ultima_root.localkey_is_minor.map({False: 'in major', True: 'in minor'})
#ultima_root.style.apply(highlight, axis=1)
fig = px.pie(ultima_root, names='numeral', values='counts',
facet_row='cadence', facet_col='localkey_is_minor',
height=1500,
category_orders={'cadence': cadence_counts.index},
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(**STD_LAYOUT)
fig.show()
#phrase_segments.groupby(level=[0,1,2], group_keys=False).apply(lambda df: df if ((df.cadence == 'PAC') & (df.numeral == 'V')).any() else None)
Ultimae bass note as scale degree#
ultima_bass = phrase_segments.groupby(['localkey_is_minor','cadence']).bass_note.value_counts().rename('counts').reset_index()
ultima_bass.bass_note = ms3.transform(ultima_bass, ms3.fifths2sd, dict(fifths='bass_note', minor='localkey_is_minor'))
ultima_bass.localkey_is_minor = ultima_bass.localkey_is_minor.map({False: 'in major', True: 'in minor'})
#ultima_bass.style.apply(highlight, axis=1)
fig = px.pie(ultima_bass, names='bass_note', values='counts',
facet_row='cadence', facet_col='localkey_is_minor',
height=1500,
category_orders={'cadence': cadence_counts.index},
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(**STD_LAYOUT)
fig.show()
Chord progressions#
PACs with ultima I/i#
def remove_immediate_duplicates(l):
return tuple(a for a, b in zip(l, (None, ) + l) if a != b)
def get_progressions(selected='PAC', last_row={}, feature='chord', dataset=None, as_series=True, remove_duplicates=False):
"""Uses the nonlocal variable phrase_segments."""
last_row = {k: v if isinstance(v, tuple) else (v,) for k, v in last_row.items()}
progressions = []
for (corp, fname, *_), df in phrase_segments[phrase_segments[feature].notna()].groupby(level=[0,1,2]):
if dataset is not None and dataset not in corp:
continue
if (df.cadence == selected).fillna(False).any():
# remove chords after the last cadence label
df = df[df.cadence.fillna(method='bfill').notna()]
# group segments leading up to a cadence label
cadence_groups = df.cadence.notna().shift().fillna(False).cumsum()
for i, cadence in df.groupby(cadence_groups):
last_r = cadence.iloc[-1]
typ = last_r.cadence
if typ != selected:
continue
if any(last_r[feat] not in values for feat, values in last_row.items()):
continue
if remove_duplicates:
progressions.append(remove_immediate_duplicates(cadence[feature].to_list()))
else:
progressions.append(tuple(cadence[feature]))
if as_series:
return pd.Series(progressions, dtype='object')
return progressions
chord_progressions = get_progressions('PAC', dict(numeral=('I', 'i')), 'chord')
print(f"Progressions for {len(chord_progressions)} cadences:")
value_count_df(chord_progressions, "chord progressions")
numeral_progressions = get_progressions('PAC', dict(numeral=('I', 'i')), 'numeral')
value_count_df(numeral_progressions, "numeral progressions")
numeral_prog_no_dups = numeral_progressions.map(remove_immediate_duplicates)
value_count_df(numeral_prog_no_dups)
PACs ending on scale degree 1#
Scale degrees expressed w.r.t. major scale, regardless of actual key.
bass_progressions = get_progressions('PAC', dict(bass_note=0), 'bass_note')
bass_prog = bass_progressions.map(ms3.fifths2sd)
print(f"Progressions for {len(bass_progressions)} cadences:")
value_count_df(bass_prog, "bass progressions")
bass_prog_no_dups = bass_prog.map(remove_immediate_duplicates)
value_count_df(bass_prog_no_dups)
def make_sankey(data, labels, node_pos=None, margin={'l': 10, 'r': 10, 'b': 10, 't': 10}, pad=20, color='auto', **kwargs):
if color=='auto':
unique_labels = set(labels)
color_step = 100 / len(unique_labels)
unique_colors = {label: f'hsv({round(i*color_step)}%,100%,100%)' for i, label in enumerate(unique_labels)}
color = list(map(lambda l: unique_colors[l], labels))
fig = go.Figure(go.Sankey(
arrangement = 'snap',
node = dict(
pad = pad,
#thickness = 20,
#line = dict(color = "black", width = 0.5),
label = labels,
x = [node_pos[i][0] if i in node_pos else 0 for i in range(len(labels))] if node_pos is not None else None,
y = [node_pos[i][1] if i in node_pos else 0 for i in range(len(labels))] if node_pos is not None else None,
color = color,
),
link = dict(
source = data.source,
target = data.target,
value = data.value
),
),
)
fig.update_layout(margin=margin, **kwargs)
return fig
def progressions2graph_data(progressions, cut_at_stage=None):
stage_nodes = defaultdict(dict)
edge_weights = Counter()
node_counter = 0
for progression in progressions:
previous_node = None
for stage, current in enumerate(reversed(progression)):
if cut_at_stage and stage > cut_at_stage:
break
if current in stage_nodes[stage]:
current_node = stage_nodes[stage][current]
else:
stage_nodes[stage][current] = node_counter
current_node = node_counter
node_counter += 1
if previous_node is not None:
edge_weights.update([(current_node, previous_node)])
previous_node = current_node
return stage_nodes, edge_weights
def graph_data2sankey(stage_nodes, edge_weights):
data = pd.DataFrame([(u, v, w) for (u, v), w in edge_weights.items()], columns = ['source', 'target', 'value'])
node2label = {node: label for stage, nodes in stage_nodes.items() for label, node in nodes.items()}
labels = [node2label[i] for i in range(len(node2label))]
return make_sankey(data, labels)
def plot_progressions(progressions, cut_at_stage=None):
stage_nodes, edge_weights = progressions2graph_data(progressions, cut_at_stage=cut_at_stage)
return graph_data2sankey(stage_nodes, edge_weights)
Chordal roots for the 3 last stages#
plot_progressions(numeral_prog_no_dups, cut_at_stage=3)
Complete chords for the last four stages in major#
pac_major = get_progressions('PAC', dict(numeral='I', localkey_is_minor=False), 'chord')
plot_progressions(pac_major, cut_at_stage=4)
Bass degrees for the last 6 stages.#
plot_progressions(bass_prog_no_dups, cut_at_stage=7)
Bass degrees without accidentals#
def remove_sd_accidentals(t):
return tuple(map(lambda sd: sd[-1], t))
bass_prog_no_acc_no_dup = bass_prog.map(remove_sd_accidentals).map(remove_immediate_duplicates)
plot_progressions(bass_prog_no_acc_no_dup, cut_at_stage=7)
HCs ending on V#
half = get_progressions('HC', dict(numeral='V'), 'bass_note').map(ms3.fifths2sd)
print(f"Progressions for {len(half)} cadences:")
plot_progressions(half.map(remove_immediate_duplicates), cut_at_stage=5)