Annotations#
Show imports
%load_ext autoreload
%autoreload 2
import os
import dimcat as dc
import ms3
import plotly.express as px
from dimcat import groupers, plotting
import utils
Show source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)
def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)
def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)
Loading data
Show source
D = utils.get_dataset("medtner_tales", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Nikolai Medtner – Tales version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------
Nikolai Medtner – Tales version v2.3
Datapackage 'medtner_tales' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'medtner_tales': ["'medtner_tales.measures' (MuseScoreFacetName.MuseScoreMeasures)",
                                           "'medtner_tales.notes' (MuseScoreFacetName.MuseScoreNotes)",
                                           "'medtner_tales.expanded' (MuseScoreFacetName.MuseScoreHarmonies)",
                                           "'medtner_tales.chords' (MuseScoreFacetName.MuseScoreChords)",
                                           "'medtner_tales.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}
filtered_D = D.apply_step("HasHarmonyLabelsFilter")
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
chronological_corpus_names = all_metadata.get_corpus_names()
DCML harmony labels#
Show source
all_annotations = filtered_D.get_feature("DcmlAnnotations")
is_annotated_mask = all_metadata.label_count > 0
is_annotated_index = all_metadata.index[is_annotated_mask]
annotated_notes = filtered_D.get_feature("notes").subselect(is_annotated_index)
print(f"The annotated pieces have {len(annotated_notes)} notes.")
The annotated pieces have 42959 notes.
all_chords = filtered_D.get_feature("harmonylabels")
print(
    f"{len(all_annotations)} annotations, of which {len(all_chords)} are harmony labels."
)
6502 annotations, of which 6442 are harmony labels.
Harmony labels#
Unigrams#
For computing unigram statistics, the tokens need to be grouped by their occurrence within a major or a minor key
because this changes their meaning. To that aim, the annotated corpus needs to be sliced into contiguous localkey
segments which are then grouped into a major (is_minor=False) and a minor group.
root_durations = (
    all_chords[all_chords.root.between(-5, 6)]
    .groupby(["root", "chord_type"])
    .duration_qb.sum()
)
# sort by stacked bar length:
# root_durations = root_durations.sort_values(key=lambda S: S.index.get_level_values(0).map(S.groupby(level=0).sum()),
# ascending=False)
bar_data = root_durations.reset_index()
bar_data.root = bar_data.root.map(ms3.fifths2iv)
fig = px.bar(
    bar_data,
    x="root",
    y="duration_qb",
    color="chord_type",
    title="Distribution of chord types over chord roots",
    labels=dict(
        root="Chord root expressed as interval above the local (or secondary) tonic",
        duration_qb="duration in quarter notes",
        chord_type="chord type",
    ),
)
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "chord_type_distribution_over_scale_degrees_absolute_stacked_bars")
fig.show()
relative_roots = all_chords[
    ["numeral", "duration_qb", "relativeroot", "localkey_is_minor", "chord_type"]
].copy()
relative_roots["relativeroot_resolved"] = ms3.transform(
    relative_roots, ms3.resolve_relative_keys, ["relativeroot", "localkey_is_minor"]
)
has_rel = relative_roots.relativeroot_resolved.notna()
relative_roots.loc[has_rel, "localkey_is_minor"] = relative_roots.loc[
    has_rel, "relativeroot_resolved"
].str.islower()
relative_roots["root"] = ms3.transform(
    relative_roots, ms3.roman_numeral2fifths, ["numeral", "localkey_is_minor"]
)
chord_type_frequency = all_chords.chord_type.value_counts()
replace_rare = ms3.map_dict(
    {t: "other" for t in chord_type_frequency[chord_type_frequency < 500].index}
)
relative_roots["type_reduced"] = relative_roots.chord_type.map(replace_rare)
# is_special = relative_roots.chord_type.isin(('It', 'Ger', 'Fr'))
# relative_roots.loc[is_special, 'root'] = -4
root_durations = (
    relative_roots.groupby(["root", "type_reduced"])
    .duration_qb.sum()
    .sort_values(ascending=False)
)
bar_data = root_durations.reset_index()
bar_data.root = bar_data.root.map(ms3.fifths2iv)
root_order = (
    bar_data.groupby("root")
    .duration_qb.sum()
    .sort_values(ascending=False)
    .index.to_list()
)
fig = px.bar(
    bar_data,
    x="root",
    y="duration_qb",
    color="type_reduced",
    barmode="group",
    log_y=True,
    color_discrete_map=utils.TYPE_COLORS,
    category_orders=dict(
        root=root_order,
        type_reduced=relative_roots.type_reduced.value_counts().index.to_list(),
    ),
    labels=dict(
        root="intervallic difference between chord root to the local or secondary tonic",
        duration_qb="duration in quarter notes",
        type_reduced="chord type",
    ),
    width=1000,
    height=400,
)
fig.update_layout(
    **utils.STD_LAYOUT,
    legend=dict(
        orientation="h",
        xanchor="right",
        x=1,
        y=1,
    ),
)
save_figure_as(fig, "chord_type_distribution_over_scale_degrees_absolute_grouped_bars")
fig.show()
print(
    f"Reduced to {len(set(bar_data.iloc[:,:2].itertuples(index=False, name=None)))} types. "
    f"Paper cites the sum of types in major and types in minor (see below), treating them as distinct."
)
Reduced to 50 types. Paper cites the sum of types in major and types in minor (see below), treating them as distinct.
dim_or_aug = bar_data[
    bar_data.root.str.startswith("a") | bar_data.root.str.startswith("d")
].duration_qb.sum()
complete = bar_data.duration_qb.sum()
print(
    f"On diminished or augmented scale degrees: {dim_or_aug} / {complete} = {dim_or_aug / complete}"
)
On diminished or augmented scale degrees: 20.25 / 6598.0 = 0.0030691118520763867
chords_by_mode = groupers.ModeGrouper().process(all_chords)
chords_by_mode.format = "scale_degree"
Whole dataset#
unigram_proportions = chords_by_mode.get_default_analysis()
unigram_proportions.make_ranking_table()
| mode | major | minor | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| chord_and_mode | scale_degrees | duration_qb | proportion | proportion_% | chord_and_mode | scale_degrees | duration_qb | proportion | proportion_% | |
| rank | ||||||||||
| 1 | I, major | (1, 3, 5) | 399.25 | 0.156497 | 15.65 % | i, minor | (1, 3, 5) | 576.666667 | 0.142498 | 14.25 % | 
| 2 | V, major | (5, 7, 2) | 128.50 | 0.050369 | 5.04 % | V, minor | (5, #7, 2) | 181.583333 | 0.044870 | 4.49 % | 
| 3 | V7, major | (5, 7, 2, 4) | 122.00 | 0.047821 | 4.78 % | i6, minor | (3, 5, 1) | 180.166667 | 0.044520 | 4.45 % | 
| 4 | I6, major | (3, 5, 1) | 66.50 | 0.026067 | 2.61 % | V7, minor | (5, #7, 2, 4) | 129.000000 | 0.031877 | 3.19 % | 
| 5 | IV, major | (4, 6, 1) | 63.00 | 0.024695 | 2.47 % | VI, minor | (6, 1, 3) | 82.333333 | 0.020345 | 2.03 % | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 863 | NaN | NaN | NaN | NaN | NaN | V6(9), minor | (#7, 2, 5) | 0.250000 | 0.000062 | 0.01 % | 
| 864 | NaN | NaN | NaN | NaN | NaN | viio64/III, minor | (6, 2, 4) | 0.250000 | 0.000062 | 0.01 % | 
| 865 | NaN | NaN | NaN | NaN | NaN | III(#54), minor | (3, 6, #7) | 0.250000 | 0.000062 | 0.01 % | 
| 866 | NaN | NaN | NaN | NaN | NaN | ii43/VII, minor | (5, 7, 1, 3) | 0.250000 | 0.000062 | 0.01 % | 
| 867 | NaN | NaN | NaN | NaN | NaN | vo7, minor | (5, 7, b2, b4) | 0.200000 | 0.000049 | 0.0 % | 
867 rows × 10 columns
chords_by_mode.apply_step("Counter")
| count | |||||
|---|---|---|---|---|---|
| mode | corpus | piece | chord_and_mode | scale_degrees | |
| major | medtner_tales | op08n01 | I, major | (1, 3, 5) | 5 | 
| vi7, major | (6, 1, 3, 5) | 2 | |||
| V, major | (5, 7, 2) | 2 | |||
| viio6, major | (2, 4, 7) | 1 | |||
| vii%65, major | (2, 4, 6, 7) | 1 | |||
| ... | ... | ... | ... | ... | ... | 
| minor | medtner_tales | op48n02 | III6, minor | (5, 7, 3) | 1 | 
| III64, minor | (7, 3, 5) | 1 | |||
| I(9)/bII, minor | (b2, 4, 6) | 1 | |||
| I/III, minor | (3, 5, 7) | 1 | |||
| viio7/V/bii, minor | (5, 7, b2, b4) | 1 | 
2775 rows × 1 columns
chords_by_mode.format = "scale_degree"
chords_by_mode.get_default_analysis().make_ranking_table()
| mode | major | minor | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| chord_and_mode | scale_degrees | duration_qb | proportion | proportion_% | chord_and_mode | scale_degrees | duration_qb | proportion | proportion_% | |
| rank | ||||||||||
| 1 | I, major | (1, 3, 5) | 399.25 | 0.156497 | 15.65 % | i, minor | (1, 3, 5) | 576.666667 | 0.142498 | 14.25 % | 
| 2 | V, major | (5, 7, 2) | 128.50 | 0.050369 | 5.04 % | V, minor | (5, #7, 2) | 181.583333 | 0.044870 | 4.49 % | 
| 3 | V7, major | (5, 7, 2, 4) | 122.00 | 0.047821 | 4.78 % | i6, minor | (3, 5, 1) | 180.166667 | 0.044520 | 4.45 % | 
| 4 | I6, major | (3, 5, 1) | 66.50 | 0.026067 | 2.61 % | V7, minor | (5, #7, 2, 4) | 129.000000 | 0.031877 | 3.19 % | 
| 5 | IV, major | (4, 6, 1) | 63.00 | 0.024695 | 2.47 % | VI, minor | (6, 1, 3) | 82.333333 | 0.020345 | 2.03 % | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 863 | NaN | NaN | NaN | NaN | NaN | V6(9), minor | (#7, 2, 5) | 0.250000 | 0.000062 | 0.01 % | 
| 864 | NaN | NaN | NaN | NaN | NaN | viio64/III, minor | (6, 2, 4) | 0.250000 | 0.000062 | 0.01 % | 
| 865 | NaN | NaN | NaN | NaN | NaN | III(#54), minor | (3, 6, #7) | 0.250000 | 0.000062 | 0.01 % | 
| 866 | NaN | NaN | NaN | NaN | NaN | ii43/VII, minor | (5, 7, 1, 3) | 0.250000 | 0.000062 | 0.01 % | 
| 867 | NaN | NaN | NaN | NaN | NaN | vo7, minor | (5, 7, b2, b4) | 0.200000 | 0.000049 | 0.0 % | 
867 rows × 10 columns
unigram_proportions.plot_grouped()