Overview#

This notebook gives a general overview of the features included in the dataset.

Hide imports
%load_ext autoreload
%autoreload 2
import os

import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display

import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

D = utils.get_dataset("debussy_suite_bergamasque", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Claude Debussy - Suite Bergamasque version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Claude Debussy - Suite Bergamasque version v2.3
Datapackage 'debussy_suite_bergamasque' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'debussy_suite_bergamasque': ["'debussy_suite_bergamasque.measures' "
                                                       '(MuseScoreFacetName.MuseScoreMeasures)',
                                                       "'debussy_suite_bergamasque.notes' "
                                                       '(MuseScoreFacetName.MuseScoreNotes)',
                                                       "'debussy_suite_bergamasque.expanded' "
                                                       '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                       "'debussy_suite_bergamasque.chords' "
                                                       '(MuseScoreFacetName.MuseScoreChords)',
                                                       "'debussy_suite_bergamasque.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb ... ambitus imslp viaf musicbrainz wikidata text staff_1_ambitus staff_1_instrument staff_2_ambitus staff_2_instrument
corpus piece
debussy_suite_bergamasque l075-01_suite_prelude {1: '4/4'} {1: -1} 89 89 356.0 89 89 356.0 () 1533.67 ... 24-94 (C1-Bb6) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/fe4cfa64-156a-3d7... https://www.wikidata.org/wiki/Q29117932 <b>Prélude</b> 48-94 (C3-Bb6) Piano 24-90 (C1-F#6) Piano
l075-02_suite_menuet {1: '3/4'} {1: 0, 73: -3, 80: 3, 97: 0} 104 104 312.0 104 104 312.0 () 1266.00 ... 27-93 (Eb1-A6) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/82ea1cd4-1692-3b5... https://www.wikidata.org/wiki/Q29117940 ; <b>Menuet</b> 50-93 (D3-A6) Piano 27-77 (Eb1-F5) Piano
l075-03_suite_clair {1: '9/8'} {1: -5, 37: 4, 43: -5} 72 72 324.0 72 72 324.0 () 1464.00 ... 27-97 (Eb1-C#7) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/8d331505-4d88-39a... https://www.wikidata.org/wiki/Q29117946 <b>Clair de lune</b> 54-97 (Gb3-C#7) Piano 27-97 (Eb1-C#7) Piano
l075-04_suite_passepied {1: '4/4'} {1: 3, 76: -4, 88: 3} 156 156 624.0 156 156 624.0 () 1825.33 ... 30-97 (F#1-C#7) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/59cce5c6-5483-32c... https://www.wikidata.org/wiki/Q29117951 <b>Passepied</b> 50-97 (D3-C#7) Piano 30-76 (F#1-E5) Piano

4 rows × 54 columns

mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years
corpus
debussy_suite_bergamasque    1897.5
Name: mean_composition_year, dtype: float64

Composition dates#

This section relies on the dataset’s metadata.

valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
    f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
    f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)
Composition dates range from 1890 ('debussy_suite_bergamasque', 'l075-01_suite_prelude') to 1905 ('debussy_suite_bergamasque', 'l075-01_suite_prelude').

Mean composition years per corpus#

def make_summary(metadata_df):
    piece_is_annotated = metadata_df.label_count > 0
    return metadata_df[piece_is_annotated].copy()
Hide source
summary = make_summary(all_metadata)
bar_data = pd.concat(
    [
        mean_composition_years.rename("year"),
        summary.groupby(level="corpus").size().rename("pieces"),
    ],
    axis=1,
).reset_index()

N = len(summary)
fig = px.bar(
    bar_data,
    x="year",
    y="pieces",
    color="corpus",
    color_discrete_map=corpus_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary
TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb ... ambitus imslp viaf musicbrainz wikidata text staff_1_ambitus staff_1_instrument staff_2_ambitus staff_2_instrument
corpus piece
debussy_suite_bergamasque l075-01_suite_prelude {1: '4/4'} {1: -1} 89 89 356.0 89 89 356.0 () 1533.67 ... 24-94 (C1-Bb6) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/fe4cfa64-156a-3d7... https://www.wikidata.org/wiki/Q29117932 <b>Prélude</b> 48-94 (C3-Bb6) Piano 24-90 (C1-F#6) Piano
l075-02_suite_menuet {1: '3/4'} {1: 0, 73: -3, 80: 3, 97: 0} 104 104 312.0 104 104 312.0 () 1266.00 ... 27-93 (Eb1-A6) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/82ea1cd4-1692-3b5... https://www.wikidata.org/wiki/Q29117940 ; <b>Menuet</b> 50-93 (D3-A6) Piano 27-77 (Eb1-F5) Piano
l075-03_suite_clair {1: '9/8'} {1: -5, 37: 4, 43: -5} 72 72 324.0 72 72 324.0 () 1464.00 ... 27-97 (Eb1-C#7) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/8d331505-4d88-39a... https://www.wikidata.org/wiki/Q29117946 <b>Clair de lune</b> 54-97 (Gb3-C#7) Piano 27-97 (Eb1-C#7) Piano
l075-04_suite_passepied {1: '4/4'} {1: 3, 76: -4, 88: 3} 156 156 624.0 156 156 624.0 () 1825.33 ... 30-97 (F#1-C#7) https://imslp.org/wiki/Suite_bergamasque_(Debu... https://viaf.org/viaf/177398380 https://musicbrainz.org/work/59cce5c6-5483-32c... https://www.wikidata.org/wiki/Q29117951 <b>Passepied</b> 50-97 (D3-C#7) Piano 30-76 (F#1-E5) Piano

4 rows × 54 columns

Composition years histogram#

Hide source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
    hist_data,
    x="composed_end",
    color="corpus",
    labels=dict(
        composed_end="decade",
        count="pieces",
    ),
    color_discrete_map=corpus_name_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()

Dimensions#

Overview#

def make_overview_table(groupby, group_name="pieces"):
    n_groups = groupby.size().rename(group_name)
    absolute_numbers = dict(
        measures=groupby.last_mn.sum(),
        length=groupby.length_qb.sum(),
        notes=groupby.n_onsets.sum(),
        labels=groupby.label_count.sum(),
    )
    absolute = pd.DataFrame.from_dict(absolute_numbers)
    absolute = pd.concat([n_groups, absolute], axis=1)
    sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
    absolute = pd.concat([absolute, sum_row])
    return absolute


absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
pieces measures length notes labels
Suite Bergamasque 4 421 1616 7772 1013
sum 4 421 1616 7772 1013
def summarize_dataset(D):
    all_metadata = D.get_metadata()
    summary = make_summary(all_metadata)
    return make_overview_table(summary.groupby(level=0))


corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())
|                           |   pieces |   measures |   length |   notes |   labels |
|:--------------------------|---------:|-----------:|---------:|--------:|---------:|
| debussy_suite_bergamasque |        4 |        421 |     1616 |    7772 |     1013 |
| sum                       |        4 |        421 |     1616 |    7772 |     1013 |

Measures#

all_measures = D.get_feature("measures")
print(
    f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
421 measures over 4 files.
mc mn quarterbeats duration_qb keysig timesig act_dur mc_offset numbering_offset dont_count barline breaks repeats next
corpus piece i
debussy_suite_bergamasque l075-01_suite_prelude 0 1 1 0 4.0 -1 4/4 1 0 <NA> <NA> <NA> <NA> firstMeasure (2,)
1 2 2 4 4.0 -1 4/4 1 0 <NA> <NA> <NA> <NA> <NA> (3,)
2 3 3 8 4.0 -1 4/4 1 0 <NA> <NA> <NA> line <NA> (4,)
3 4 4 12 4.0 -1 4/4 1 0 <NA> <NA> <NA> <NA> <NA> (5,)
4 5 5 16 4.0 -1 4/4 1 0 <NA> <NA> <NA> <NA> <NA> (6,)
all_measures.get_default_analysis().plot_grouped()

Harmony labels#

All symbols, independent of the local key (the mode of which changes their semantics).

try:
    all_annotations = D.get_feature("harmonylabels").df
except Exception:
    all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
    display(all_annotations.head())
    print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
    no_chord = all_annotations.root.isna()
    if no_chord.sum() > 0:
        print(
            f"{no_chord.sum()} of them are not chords. Their values are:"
            f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
        )
    all_chords = all_annotations[~no_chord].copy()
    print(
        f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
        f"{len(all_chords.groupby(level=[0,1]))} documents."
    )
    all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
    all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
else:
    print("Dataset contains no annotations.")
mc mn quarterbeats quarterbeats_all_endings duration_qb mc_onset mn_onset timesig staff voice ... numeral_or_applied_to_numeral intervals_over_bass intervals_over_root scale_degrees scale_degrees_and_mode scale_degrees_major scale_degrees_minor globalkey localkey chord
corpus piece i
debussy_suite_bergamasque l075-01_suite_prelude 0 1 1 0 0 2.0 0 0 4/4 2 1 ... I (M3, P5) (M3, P5) (1, 3, 5) (1, 3, 5), major (1, 3, 5) (1, #3, 5) F I I
1 1 1 2 2 6.0 1/2 1/2 4/4 2 1 ... V (M3, P5, m7) (M3, P5, m7) (5, 7, 2, 4) (5, 7, 2, 4), major (5, 7, 2, 4) (5, #7, 2, 4) F I V7(+2)
2 3 3 8 8 2.0 0 0 4/4 2 1 ... I (M3, P5) (M3, P5) (1, 3, 5) (1, 3, 5), major (1, 3, 5) (1, #3, 5) F I I(+2)
3 3 3 10 10 2.0 1/2 1/2 4/4 2 1 ... IV (M3, P5) (M3, P5) (4, 6, 1) (4, 6, 1), major (4, 6, 1) (4, #6, 1) F I IV(+6)
4 4 4 12 12 2.0 0 0 4/4 2 1 ... iii (M3, P5, M6) (m3, P5, m7) (5, 7, 2, 3) (5, 7, 2, 3), major (5, 7, 2, 3) (5, #7, 2, #3) F I iii65

5 rows × 52 columns

Concatenated annotation tables contains 1013 rows.
Dataset contains 1013 tokens and 291 types over 4 documents.