Cadences#

Hide imports
%load_ext autoreload
%autoreload 2
import os
from collections import Counter, defaultdict

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import plotting
from dimcat.steps import filters, groupers, slicers

import utils
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "cadences"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("debussy_suite_bergamasque", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Claude Debussy - Suite Bergamasque version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Claude Debussy - Suite Bergamasque version v2.3
Datapackage 'debussy_suite_bergamasque' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'debussy_suite_bergamasque': ["'debussy_suite_bergamasque.measures' "
                                                       '(MuseScoreFacetName.MuseScoreMeasures)',
                                                       "'debussy_suite_bergamasque.notes' "
                                                       '(MuseScoreFacetName.MuseScoreNotes)',
                                                       "'debussy_suite_bergamasque.expanded' "
                                                       '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                       "'debussy_suite_bergamasque.chords' "
                                                       '(MuseScoreFacetName.MuseScoreChords)',
                                                       "'debussy_suite_bergamasque.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}
try:
    cadence_labels = D.get_feature("cadencelabels")
except Exception:
    raise ValueError("Corpus has no cadence annotations.")
cadence_labels
mc mn quarterbeats quarterbeats_all_endings duration_qb mc_onset mn_onset timesig staff voice ... globalkey localkey globalkey_is_minor localkey_is_minor globalkey_mode localkey_mode localkey_resolved localkey_and_mode cadence_type cadence
corpus piece i
debussy_suite_bergamasque l075-01_suite_prelude 15 7 7 24 24 2.00 0 0 4/4 2 1 ... F I False False major major I I, major IAC IAC
57 19 19 72 72 1.00 0 0 4/4 2 1 ... F I False False major major I I, major PAC PAC
75 23 23 183/2 183/2 0.50 7/8 7/8 4/4 2 1 ... F iii False True major minor iii iii, major HC HC
110 35 35 136 136 0.50 0 0 4/4 2 1 ... F iii False True major minor iii iii, major HC HC
128 39 39 311/2 311/2 0.50 7/8 7/8 4/4 2 1 ... F iii False True major minor iii iii, major HC HC
147 43 43 170 170 2.00 1/2 1/2 4/4 2 1 ... F iii False True major minor iii iii, major PAC PAC
216 66 66 260 260 2.00 0 0 4/4 2 1 ... F I False False major major I I, major IAC IAC
231 72 72 284 284 2.00 0 0 4/4 2 1 ... F I False False major major I I, major IAC IAC
255 81 81 320 320 1.00 0 0 4/4 2 1 ... F I False False major major I I, major IAC IAC
273 88 88 348 348 8.00 0 0 4/4 2 1 ... F I False False major major I I, major PC PC
l075-02_suite_menuet 8 5 5 12 12 1.00 0 0 3/4 2 1 ... a i True True minor minor i i, minor DC DC
27 12 12 33 33 3.00 0 0 3/4 2 1 ... a i True True minor minor i i, minor DC DC
41 18 18 51 51 0.75 0 0 3/4 2 1 ... a i True True minor minor i i, minor PAC PAC
134 49 49 144 144 0.50 0 0 3/4 2 1 ... a i True True minor minor i i, minor PAC PAC
232 73 73 216 216 1.00 0 0 3/4 2 1 ... a i True True minor minor i i, minor EC EC
251 80 80 237 237 1.00 0 0 3/4 2 1 ... a i True True minor minor i i, minor DC DC
304 103 103 306 306 6.00 0 0 3/4 2 1 ... a i True True minor minor i i, minor PAC PAC
l075-03_suite_clair 19 9 9 36 36 4.50 0 0 9/8 2 1 ... Db I False False major major I I, major IAC IAC
50 26 26 231/2 231/2 1.50 3/4 3/4 9/8 2 1 ... Db I False False major major I I, major HC HC
69 35 35 153 153 1.50 0 0 9/8 2 1 ... Db I False False major major I I, major IAC IAC
120 59 59 261 261 1.50 0 0 9/8 2 1 ... Db I False False major major I I, major IAC IAC
135 66 66 585/2 585/2 1.50 0 0 9/8 2 1 ... Db I False False major major I I, major PAC PAC
l075-04_suite_passepied 36 18 18 68 68 6.00 0 0 4/4 2 1 ... f# i True True minor minor i i, minor HC HC
70 37 37 146 146 2.00 1/2 1/2 4/4 2 1 ... f# i True True minor minor i i, minor HC HC
178 84 84 332 332 2.00 0 0 4/4 2 1 ... f# i True True minor minor i i, minor IAC IAC
203 102 102 404 404 8.00 0 0 4/4 2 1 ... f# i True True minor minor i i, minor HC HC
238 121 121 480 480 6.00 0 0 4/4 2 1 ... f# i True True minor minor i i, minor HC HC
274 147 147 584 584 2.00 0 0 4/4 2 1 ... f# i True True minor minor i i, minor PAC PAC
283 154 154 612 612 12.00 0 0 4/4 2 1 ... f# i True True minor minor i i, minor PC PC

29 rows × 22 columns

cadence_labels.plot_grouped(
    title="Distribution of cadence types over the DLC",
    output=make_output_path("all_cadences_pie"),
    width=1000,
    height=1000,
)

Metadata#

cadence_filter = filters.HasCadenceAnnotationsFilter()
filtered_D = cadence_filter.process(D)
hascadence_metadata = filtered_D.get_metadata()
chronological_corpus_names = hascadence_metadata.get_corpus_names()
cadence_counts = cadence_labels.apply_step("Counter")
cadence_counts.plot_grouped("corpus")
mean_composition_years = (
    hascadence_metadata.groupby(level=0).composed_end.mean().astype(int).sort_values()
)
chronological_corpus_names = hascadence_metadata.get_corpus_names()
bar_data = pd.concat(
    [
        mean_composition_years.rename("year"),
        hascadence_metadata.groupby(level="corpus").size().rename("pieces"),
    ],
    axis=1,
).reset_index()
fig = px.bar(
    bar_data,
    x="year",
    y="pieces",
    color="corpus",
    title="Pieces contained in the dataset",
)
fig.update_traces(width=5)

Overall#

  • PAC: Perfect Authentic Cadence

  • IAC: Imperfect Authentic Cadence

  • HC: Half Cadence

  • DC: Deceptive Cadence

  • EC: Evaded Cadence

  • PC: Plagal Cadence

print(f"{len(cadence_labels)} cadence labels.")
utils.value_count_df(cadence_labels.cadence)
29 cadence labels.
counts %
cadence
IAC 8 27.59
HC 8 27.59
PAC 7 24.14
DC 3 10.34
PC 2 6.9
EC 1 3.45

Per dataset#

all_labels = D.get_feature("harmonylabels")
cadence_count_per_dataset = all_labels.groupby("corpus").cadence.value_counts()
cadence_fraction_per_dataset = (
    cadence_count_per_dataset / cadence_count_per_dataset.groupby(level=0).sum()
)
cadence_fraction_per_dataset = cadence_fraction_per_dataset.rename(
    "fraction"
).reset_index()
cadence_fraction_per_dataset["corpus_name"] = cadence_fraction_per_dataset.corpus.map(
    utils.get_corpus_display_name
)
fig = px.bar(
    cadence_fraction_per_dataset,
    x="corpus_name",
    y="fraction",
    title="Distribution of cadence types per corpus",
    color="cadence",
    color_discrete_map=plotting.CADENCE_COLORS,
    labels=dict(corpus_name="", fraction="Fraction of all cadences"),
    category_orders=dict(corpus_name=chronological_corpus_names),
)
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_cadences_corpuswise_stacked_bars", height=1000)
fig.show()
fig = px.pie(
    cadence_count_per_dataset.rename("count").reset_index(),
    names="cadence",
    color="cadence",
    values="count",
    facet_col="corpus",
    facet_col_wrap=4,
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_cadences_corpuswise_pies")
fig.show()
cadence_count_per_mode = (
    all_labels.groupby("localkey_is_minor").cadence.value_counts().reset_index()
)
cadence_count_per_mode["mode"] = cadence_count_per_mode.localkey_is_minor.map(
    {False: "major", True: "minor"}
)
fig = px.pie(
    cadence_count_per_mode,
    names="cadence",
    color="cadence",
    values="count",
    facet_col="mode",
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_cadences_modewise_pies")
fig.show()
corelli = dc.Dataset()
CORELLI_PATH = os.path.abspath(os.path.join("..", "corelli"))
corelli.load(directory=CORELLI_PATH, parse_tsv=False)
annotated_view = corelli.data.get_view("annotated")
annotated_view.include("facets", "expanded")
annotated_view.pieces_with_incomplete_facets = False
corelli.data.set_view(annotated_view)
corelli.data.parse_tsv(choose="auto")
corelli.get_indices()
corelli_labels = corelli.get_facet("expanded")
corelli_cadence_count_per_mode = (
    corelli_labels.groupby("localkey_is_minor").cadence.value_counts().reset_index()
)
corelli_cadence_count_per_mode["mode"] = (
    corelli_cadence_count_per_mode.localkey_is_minor.map(
        {False: "major", True: "minor"}
    )
)
fig = px.pie(
    corelli_cadence_count_per_mode,
    names="cadence",
    color="cadence",
    values="count",
    facet_col="mode",
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_corelli_cadences_modewise_pies")
fig.show()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[14], line 3
      1 corelli = dc.Dataset()
      2 CORELLI_PATH = os.path.abspath(os.path.join("..", "corelli"))
----> 3 corelli.load(directory=CORELLI_PATH, parse_tsv=False)
      4 annotated_view = corelli.data.get_view("annotated")
      5 annotated_view.include("facets", "expanded")

TypeError: Dataset.load() got an unexpected keyword argument 'directory'
combined_cadences = pd.concat(
    [cadence_count_per_mode, corelli_cadence_count_per_mode],
    keys=["couperin", "corelli"],
    names=["corpus", None],
).reset_index(level=0)
fig = px.pie(
    combined_cadences,
    names="cadence",
    color="cadence",
    values="count",
    facet_col="mode",
    facet_row="corpus",
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
updated_layout = dict(utils.STD_LAYOUT, font=dict(size=40))
fig.update_layout(**updated_layout)
save_figure_as(fig, "couperin_corelli_cadences_modewise_pies")
fig.show()

Per phrase#

Number of cadences per phrase#

grouped_by_corpus = groupers.CorpusGrouper().process(D)
segmented = slicers.PhraseSlicer().process_data(grouped_by_corpus)
phrases = segmented.get_slice_info()
phrase_segments = segmented.get_facet("expanded")
phrase_gpb = phrase_segments.groupby(level=[0, 1, 2])
local_keys_per_phrase = phrase_gpb.localkey.unique().map(tuple)
n_local_keys_per_phrase = local_keys_per_phrase.map(len)
phrases_with_keys = pd.concat(
    [
        n_local_keys_per_phrase.rename("n_local_keys"),
        local_keys_per_phrase.rename("local_keys"),
        phrases,
    ],
    axis=1,
)
phrases_with_cadences = pd.concat(
    [
        phrase_gpb.cadence.nunique().rename("n_cadences"),
        phrase_gpb.cadence.unique()
        .rename("cadences")
        .map(lambda arr: tuple(e for e in arr if not pd.isnull(e))),
        phrases_with_keys,
    ],
    axis=1,
)
utils.value_count_df(phrases_with_cadences.n_cadences, counts_column="#phrases")
n_cad = (
    phrases_with_cadences.groupby(level="corpus")
    .n_cadences.value_counts()
    .rename("counts")
    .reset_index()
    .sort_values("n_cadences")
)
n_cad.n_cadences = n_cad.n_cadences.astype(str)
fig = px.bar(
    n_cad,
    x="corpus",
    y="counts",
    color="n_cadences",
    height=800,
    barmode="group",
    labels=dict(n_cadences="#cadences in a phrase"),
    category_orders=dict(dataset=chronological_corpus_names),
)
save_figure_as(fig, "n_cadences_per_phrase_corpuswise_absolute_grouped_bars")
fig.show()

Combinations of cadence types for phrases with more than one cadence#

utils.value_count_df(
    phrases_with_cadences[phrases_with_cadences.n_cadences > 1].cadences
)

Positioning of cadences within phrases#

df_rows = []
y_position = 0
for ix in (
    phrases_with_cadences[phrases_with_cadences.n_cadences > 0]
    .sort_values("duration_qb")
    .index
):
    df = phrase_segments.loc[ix]
    description = str(ix)
    if df.cadence.notna().any():
        interval = ix[2]
        df_rows.append((y_position, interval.length, "end of phrase", description))
        start_pos = interval.left
        cadences = df.loc[df.cadence.notna(), ["quarterbeats", "cadence"]]
        cadences.quarterbeats -= start_pos
        for cadence_x, cadence_type in cadences.itertuples(index=False, name=None):
            df_rows.append((y_position, cadence_x, cadence_type, description))
        y_position += 1
    # else:
    #    df_rows.append((y_position, pd.NA, pd.NA, description))

data = pd.DataFrame(df_rows, columns=["phrase_ix", "x", "marker", "description"])
fig = px.scatter(
    data[data.x.notna()],
    x="x",
    y="phrase_ix",
    color="marker",
    hover_name="description",
    height=3000,
    labels=dict(marker="legend"),
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.update_traces(marker_size=5)
fig.update_yaxes(autorange="reversed")
save_figure_as(fig, "cadence_positions_within_all_phrases")
fig.show()

Cadence ultima#

phrase_segments = segmented.get_facet("expanded")
cadence_selector = phrase_segments.cadence.notna()
missing_chord_selector = phrase_segments.chord.isna()
cadence_with_missing_chord_selector = cadence_selector & missing_chord_selector
missing = phrase_segments[cadence_with_missing_chord_selector]
expanded = ms3.expand_dcml.expand_labels(
    phrase_segments[cadence_with_missing_chord_selector],
    propagate=False,
    chord_tones=True,
    skip_checks=True,
)
phrase_segments.loc[cadence_with_missing_chord_selector] = expanded
print(
    f"Ultima harmony missing for {(phrase_segments.cadence.notna() & phrase_segments.bass_note.isna()).sum()} cadence "
    f"labels."
)

Ultimae as Roman numeral#

def highlight(row, color="#ffffb3"):
    if row.counts < 10:
        return [None, None, None, None]
    else:
        return ["background-color: {color};"] * 4


cadence_counts = all_labels.cadence.value_counts()
ultima_root = (
    phrase_segments.groupby(["localkey_is_minor", "cadence"])
    .numeral.value_counts()
    .rename("counts")
    .to_frame()
    .reset_index()
)
ultima_root.localkey_is_minor = ultima_root.localkey_is_minor.map(
    {False: "in major", True: "in minor"}
)
# ultima_root.style.apply(highlight, axis=1)
fig = px.pie(
    ultima_root,
    names="numeral",
    values="counts",
    facet_row="cadence",
    facet_col="localkey_is_minor",
    height=1500,
    category_orders={"cadence": cadence_counts.index},
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition="inside", textinfo="percent+label")
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "ultima_root_distributions_over_cadence_types_maj_min_pies")
fig.show()
# phrase_segments.groupby(level=[0,1,2], group_keys=False).apply(lambda df: df if ((df.cadence == 'PAC') &
# (df.numeral == 'V')).any() else None)

Ultimae bass note as scale degree#

ultima_bass = (
    phrase_segments.groupby(["localkey_is_minor", "cadence"])
    .bass_note.value_counts()
    .rename("counts")
    .reset_index()
)
ultima_bass.bass_note = ms3.transform(
    ultima_bass, ms3.fifths2sd, dict(fifths="bass_note", minor="localkey_is_minor")
)
ultima_bass.localkey_is_minor = ultima_bass.localkey_is_minor.map(
    {False: "in major", True: "in minor"}
)
# ultima_bass.style.apply(highlight, axis=1)
fig = px.pie(
    ultima_bass,
    names="bass_note",
    values="counts",
    facet_row="cadence",
    facet_col="localkey_is_minor",
    height=1500,
    category_orders={"cadence": cadence_counts.index},
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition="inside", textinfo="percent+label")
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "ultima_degree_distributions_over_cadence_types_maj_min_pies")
fig.show()

Chord progressions#

PACs with ultima I/i#

def remove_immediate_duplicates(lst):
    return tuple(a for a, b in zip(lst, (None,) + lst) if a != b)


def get_progressions(
    selected="PAC",
    last_row={},
    feature="chord",
    dataset=None,
    as_series=True,
    remove_duplicates=False,
):
    """Uses the nonlocal variable phrase_segments."""
    last_row = {k: v if isinstance(v, tuple) else (v,) for k, v in last_row.items()}
    progressions = []

    for (corp, fname, *_), df in phrase_segments[
        phrase_segments[feature].notna()
    ].groupby(level=[0, 1, 2]):
        if dataset is not None and dataset not in corp:
            continue
        if (df.cadence == selected).fillna(False).any():
            # remove chords after the last cadence label
            df = df[df.cadence.bfill().notna()]
            # group segments leading up to a cadence label
            cadence_groups = df.cadence.notna().shift().fillna(False).cumsum()
            for i, cadence in df.groupby(cadence_groups):
                last_r = cadence.iloc[-1]
                typ = last_r.cadence
                if typ != selected:
                    continue
                if any(last_r[feat] not in values for feat, values in last_row.items()):
                    continue
                if remove_duplicates:
                    progressions.append(
                        remove_immediate_duplicates(cadence[feature].to_list())
                    )
                else:
                    progressions.append(tuple(cadence[feature]))
    if as_series:
        return pd.Series(progressions, dtype="object")
    return progressions
chord_progressions = get_progressions("PAC", dict(numeral=("I", "i")), "chord")
print(f"Progressions for {len(chord_progressions)} cadences:")
utils.value_count_df(chord_progressions, "chord progressions")
numeral_progressions = get_progressions("PAC", dict(numeral=("I", "i")), "numeral")
utils.value_count_df(numeral_progressions, "numeral progressions")
numeral_prog_no_dups = numeral_progressions.map(remove_immediate_duplicates)
utils.value_count_df(numeral_prog_no_dups)

PACs ending on scale degree 1#

Scale degrees expressed w.r.t. major scale, regardless of actual key.

bass_progressions = get_progressions("PAC", dict(bass_note=0), "bass_note")
bass_prog = bass_progressions.map(ms3.fifths2sd)
print(f"Progressions for {len(bass_progressions)} cadences:")
utils.value_count_df(bass_prog, "bass progressions")
bass_prog_no_dups = bass_prog.map(remove_immediate_duplicates)
utils.value_count_df(bass_prog_no_dups)
def progressions2graph_data(progressions, cut_at_stage=None):
    stage_nodes = defaultdict(dict)
    edge_weights = Counter()
    node_counter = 0
    for progression in progressions:
        previous_node = None
        for stage, current in enumerate(reversed(progression)):
            if cut_at_stage and stage > cut_at_stage:
                break
            if current in stage_nodes[stage]:
                current_node = stage_nodes[stage][current]
            else:
                stage_nodes[stage][current] = node_counter
                current_node = node_counter
                node_counter += 1
            if previous_node is not None:
                edge_weights.update([(current_node, previous_node)])
            previous_node = current_node
    return stage_nodes, edge_weights


def plot_progressions(progressions, cut_at_stage=None, **kwargs):
    stage_nodes, edge_weights = progressions2graph_data(
        progressions, cut_at_stage=cut_at_stage
    )
    return utils.graph_data2sankey(stage_nodes, edge_weights, **kwargs)

Chordal roots for the 3 last stages#

fig = plot_progressions(
    numeral_prog_no_dups,
    cut_at_stage=3,
    font=dict(size=30),
)
save_figure_as(fig, "last_3_roots_before_pacs_ending_on_1_sankey", height=800)
fig.show()

Complete chords for the last four stages in major#

pac_major = get_progressions("PAC", dict(numeral="I", localkey_is_minor=False), "chord")
fig = plot_progressions(pac_major, cut_at_stage=4)
save_figure_as(fig, "last_4_stages_before_pacs_in_major_sankey")
fig.show()

Bass degrees for the last 6 stages.#

fig = plot_progressions(bass_prog_no_dups, cut_at_stage=7)
save_figure_as(fig, "last_7_degrees_before_pacs_ending_on_1_sankey")
fig.show()

Bass degrees without accidentals#

def remove_sd_accidentals(t):
    return tuple(map(lambda sd: sd[-1], t))


bass_prog_no_acc_no_dup = bass_prog.map(remove_sd_accidentals).map(
    remove_immediate_duplicates
)
fig = plot_progressions(bass_prog_no_acc_no_dup, cut_at_stage=7)
save_figure_as(fig, "last_7_degrees_before_pacs_ending_on_1_without_accdentals_sankey")
fig.show()

HCs ending on V#

half = get_progressions("HC", dict(numeral="V"), "bass_note").map(ms3.fifths2sd)
print(f"Progressions for {len(half)} cadences:")
fig = plot_progressions(half.map(remove_immediate_duplicates), cut_at_stage=5)
save_figure_as(fig, "last_7_degrees_before_hcs_ending_on_V_sankey")
fig.show()