Notes#

Hide imports
import os

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting

import utils

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 500)
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "notes_stats"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("debussy_suite_bergamasque", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Claude Debussy - Suite Bergamasque version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Claude Debussy - Suite Bergamasque version v2.3
Datapackage 'debussy_suite_bergamasque' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'debussy_suite_bergamasque': ["'debussy_suite_bergamasque.measures' "
                                                       '(MuseScoreFacetName.MuseScoreMeasures)',
                                                       "'debussy_suite_bergamasque.notes' "
                                                       '(MuseScoreFacetName.MuseScoreNotes)',
                                                       "'debussy_suite_bergamasque.expanded' "
                                                       '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                       "'debussy_suite_bergamasque.chords' "
                                                       '(MuseScoreFacetName.MuseScoreChords)',
                                                       "'debussy_suite_bergamasque.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}

Metadata#

filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)

all_metadata = filtered_D.get_metadata()
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:, :20]
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count annotated_key harmony_version annotators reviewers
corpus
debussy_suite_bergamasque l075-01_suite_prelude {1: '4/4'} {1: -1} 89 89 356.0 89 89 356.0 () 1533.67 1721 870 0 0 274 F 2.3.0 Adrian Nagel (2.1.1), Amelia Brey (2.3.0) AB, AN
chronological_order = utils.chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
notes_feature = filtered_D.get_feature("notes")
all_notes = notes_feature.df
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
8210 notes over 4 files.
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice chord_id gracenote midi name nominal_duration octave scalar tied tpc_name tpc
corpus piece i
debussy_suite_bergamasque l075-01_suite_prelude 0 1 1 0 0 0.5 1/8 0 0 4/4 2 2 3 <NA> 29 F1 1/8 1 1 <NA> F -1
1 1 1 1/2 1/2 0.5 1/8 1/8 1/8 4/4 2 2 4 <NA> 41 F2 1/8 2 1 <NA> F -1
2 1 1 1 1 0.5 1/8 1/4 1/4 4/4 2 2 5 <NA> 48 C3 1/8 3 1 <NA> C 0
3 1 1 3/2 3/2 0.5 1/8 3/8 3/8 4/4 2 2 6 <NA> 48 C3 1/8 3 1 1 C 0
4 1 1 2 2 2.0 1/2 1/2 1/2 4/4 2 2 7 <NA> 48 C3 1/2 3 1 0 C 0
def weight_notes(nl, group_col="midi", precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration  # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)


def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch] * count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
all_notes["corpus_name"] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby("corpus_name")
weighted_midi = pd.concat(
    [weight_notes(nl, "midi", precise=False) for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_midi.columns = ["dataset", "midi"]
weighted_midi
dataset midi
0 Debussy Suite Bergamasque 24
1 Debussy Suite Bergamasque 24
2 Debussy Suite Bergamasque 26
3 Debussy Suite Bergamasque 26
4 Debussy Suite Bergamasque 26
... ... ...
6089 Debussy Suite Bergamasque 97
6090 Debussy Suite Bergamasque 97
6091 Debussy Suite Bergamasque 97
6092 Debussy Suite Bergamasque 97
6093 Debussy Suite Bergamasque 97

6094 rows × 2 columns

# fig = px.violin(weighted_midi,
#                 x='dataset',
#                 y='midi',
#                 color='dataset',
#                 title="Corpus-wise distribution over registers (ambitus)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     midi='distribution of pitches by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000, height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
#     ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "ambitus_corpuswise_violins")
# fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat(
    [weight_notes(nl, "tpc") for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_tpc.columns = ["dataset", "tpc"]
weighted_tpc
dataset tpc
0 Debussy Suite Bergamasque -8
1 Debussy Suite Bergamasque -8
2 Debussy Suite Bergamasque -8
3 Debussy Suite Bergamasque -8
4 Debussy Suite Bergamasque -8
... ... ...
2431 Debussy Suite Bergamasque 12
2432 Debussy Suite Bergamasque 12
2433 Debussy Suite Bergamasque 12
2434 Debussy Suite Bergamasque 12
2435 Debussy Suite Bergamasque 13

2436 rows × 2 columns

As violin plot#

# fig = px.violin(weighted_tpc,
#                 x='dataset',
#                 y='tpc',
#                 color='dataset',
#                 title="Corpus-wise distribution over line of fifths (tonal pitch classes)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     tpc='distribution of tonal pitch classes by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000,
#                 height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
#     ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
#     zerolinecolor='grey',
#     zeroline=True
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "pitch_class_distributions_corpuswise_violins")
# fig.show()
(all_notes)
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice chord_id gracenote midi name nominal_duration octave scalar tied tpc_name tpc corpus_name
corpus piece i
debussy_suite_bergamasque l075-01_suite_prelude 0 1 1 0 0 0.5 1/8 0 0 4/4 2 2 3 <NA> 29 F1 1/8 1 1 <NA> F -1 Debussy Suite Bergamasque
1 1 1 1/2 1/2 0.5 1/8 1/8 1/8 4/4 2 2 4 <NA> 41 F2 1/8 2 1 <NA> F -1 Debussy Suite Bergamasque
2 1 1 1 1 0.5 1/8 1/4 1/4 4/4 2 2 5 <NA> 48 C3 1/8 3 1 <NA> C 0 Debussy Suite Bergamasque
3 1 1 3/2 3/2 0.5 1/8 3/8 3/8 4/4 2 2 6 <NA> 48 C3 1/8 3 1 1 C 0 Debussy Suite Bergamasque
4 1 1 2 2 2.0 1/2 1/2 1/2 4/4 2 2 7 <NA> 48 C3 1/2 3 1 0 C 0 Debussy Suite Bergamasque
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
l075-04_suite_passepied 2224 155 155 616 616 0.5 1/8 0 0 4/4 1 1 1767 <NA> 78 F#5 1/8 5 1 <NA> F# 6 Debussy Suite Bergamasque
2225 156 156 620 620 0.5 1/8 0 0 4/4 2 1 1770 <NA> 30 F#1 1/8 1 1 <NA> F# 6 Debussy Suite Bergamasque
2226 156 156 620 620 0.5 1/8 0 0 4/4 2 1 1770 <NA> 42 F#2 1/8 2 1 <NA> F# 6 Debussy Suite Bergamasque
2227 156 156 620 620 0.5 1/8 0 0 4/4 1 1 1769 <NA> 78 F#5 1/8 5 1 <NA> F# 6 Debussy Suite Bergamasque
2228 156 156 620 620 0.5 1/8 0 0 4/4 1 1 1769 <NA> 90 F#6 1/8 6 1 <NA> F# 6 Debussy Suite Bergamasque

8210 rows × 22 columns

width = 1400
height = 800

weighted_pitch_values = pd.concat(
    [
        weighted_midi.rename(columns={"midi": "value"}),
        weighted_tpc.rename(columns={"tpc": "value"}),
    ],
    keys=["MIDI pitch", "Tonal pitch class"],
    names=["distribution"],
).reset_index(level=[0, 1])

fig = plotting.make_violin_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Dark24,
    traces_settings=dict(
        spanmode="hard",
        width=1,
        # scalemode='width'
    ),
    layout=dict(
        showlegend=False,
        margin=dict(
            t=0,
            b=0,
            l=0,
            r=0,
        ),
    ),
    x_axis=dict(
        # tickangle=45,
        tickfont_size=15
    ),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=dict(title_text=""))
save_figure_as(fig, "notes_violin", width=width, height=height)
fig
fig = plotting.make_box_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    # box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Light24,
    # traces_settings=dict(spanmode='hard'),
    layout=dict(showlegend=False, margin=dict(t=0)),
    x_axis=dict(tickangle=45, tickfont_size=15),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=True)
save_figure_as(fig, "notes_box", width=width, height=height)
fig

As bar plots#

bar_data = all_notes.groupby("tpc").duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max() + 1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(
    bar_data,
    x="tpc",
    y="duration_qb",
    labels=dict(tpc="Named pitch class", duration_qb="Duration in quarter notes"),
    color_discrete_sequence=utils.CORPUS_COLOR_SCALE,
    width=1000,
    height=300,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_absolute_bars")
fig.show()
scatter_data = all_notes.groupby(["corpus_name", "tpc"]).duration_qb.sum().reset_index()
fig = px.bar(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    width=1000,
    height=500,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_corpuswise_absolute_bars")
fig.show()

As scatter plots#

fig = px.scatter(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    facet_col="corpus_name",
    facet_col_wrap=3,
    facet_col_spacing=0.03,
    width=1000,
    height=1000,
)
fig.update_traces(mode="lines+markers")
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT, showlegend=False)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=[-12, -6, 0, 6, 12, 18],
    ticktext=["Dbb", "Gb", "C", "F#", "B#", "E##"],
    visible=True,
)
fig.update_yaxes(zeroline=False, matches=None, showticklabels=True)
save_figure_as(fig, "pitch_class_distribution_corpuswise_scatter")
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1, 5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1, 5)].duration_qb.sum()
entire = no_accidental + with_accidental
(
    f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = "
    f"{no_accidental / entire}"
)
'Fraction of note duration without accidental of the entire durations: 3333.2083333333335 / 6089.0 = 0.5474147369573548'

Notes and staves#

print("Distribution of notes over staves:")
utils.value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 4789 58.33
2 3421 41.67