Overview#

This notebook gives a general overview of the features included in the dataset.

Hide imports
%load_ext autoreload
%autoreload 2
import os

import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display

import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

D = utils.get_dataset("schulhoff_suite_dansante_en_jazz", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Erwin Schulhoff – Suite dansante en jazz version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Erwin Schulhoff – Suite dansante en jazz version v2.3
Datapackage 'schulhoff_suite_dansante_en_jazz' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'schulhoff_suite_dansante_en_jazz': ["'schulhoff_suite_dansante_en_jazz.measures' "
                                                              '(MuseScoreFacetName.MuseScoreMeasures)',
                                                              "'schulhoff_suite_dansante_en_jazz.notes' "
                                                              '(MuseScoreFacetName.MuseScoreNotes)',
                                                              "'schulhoff_suite_dansante_en_jazz.expanded' "
                                                              '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                              "'schulhoff_suite_dansante_en_jazz.chords' "
                                                              '(MuseScoreFacetName.MuseScoreChords)',
                                                              "'schulhoff_suite_dansante_en_jazz.metadata' "
                                                              '(FeatureName.Metadata)']}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb ... imslp musicbrainz typesetter viaf P86 (composer) pdf staff_1_instrument staff_1_ambitus staff_2_instrument staff_2_ambitus
corpus piece
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp {1: '2/2'} {1: 0} 46 46 184.0 46 46 184.0 () 505.83 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/2bfa37b6-bc13-4e9... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 34-94 (Bb1-Bb6) Piano 35-77 (B1-F5)
suite_dansante_en_jazz_2_strait {1: '2/2'} {1: 0} 40 39 160.0 76 76 304.0 (38], [39) 735.25 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/5c0b4b0a-eee3-491... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 55-93 (G3-A6) Piano 31-91 (G1-G6)
suite_dansante_en_jazz_3_waltz {1: '3/4'} {1: 0} 71 70 213.0 134 134 402.0 (68], [69, 70, 71) 989.00 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/876be800-80fe-437... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 56-93 (Ab3-A6) Piano 28-68 (E1-G#4)
suite_dansante_en_jazz_4_tango {1: '2/4'} {1: 0} 41 40 82.0 80 80 160.0 (40], [41) 267.50 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/44b22f8e-949f-464... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 57-89 (A3-F6) Piano 38-78 (D2-Gb5)
suite_dansante_en_jazz_5_slow {1: '2/2'} {1: 0} 42 41 168.0 65 65 260.0 (40], [41, 42) 859.33 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/3dbf5c4a-ef31-4a1... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 54-90 (F#3-F#6) Piano 34-69 (Bb1-A4)
suite_dansante_en_jazz_6_fox-trot {1: '2/2'} {1: 0} 50 50 200.0 82 82 328.0 () 711.33 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/f3bc4a4f-0ba2-45e... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 38-90 (D2-F#6) Piano 26-94 (D1-A#6)

6 rows × 53 columns

mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years
corpus
schulhoff_suite_dansante_en_jazz    1931.0
Name: mean_composition_year, dtype: float64

Composition dates#

This section relies on the dataset’s metadata.

valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
    f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
    f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)
Composition dates range from 1931 ('schulhoff_suite_dansante_en_jazz', 'suite_dansante_en_jazz_1_stomp') to 1931 ('schulhoff_suite_dansante_en_jazz', 'suite_dansante_en_jazz_1_stomp').

Mean composition years per corpus#

def make_summary(metadata_df):
    piece_is_annotated = metadata_df.label_count > 0
    return metadata_df[piece_is_annotated].copy()
Hide source
summary = make_summary(all_metadata)
bar_data = pd.concat(
    [
        mean_composition_years.rename("year"),
        summary.groupby(level="corpus").size().rename("pieces"),
    ],
    axis=1,
).reset_index()

N = len(summary)
fig = px.bar(
    bar_data,
    x="year",
    y="pieces",
    color="corpus",
    color_discrete_map=corpus_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary
TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb ... imslp musicbrainz typesetter viaf P86 (composer) pdf staff_1_instrument staff_1_ambitus staff_2_instrument staff_2_ambitus
corpus piece
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp {1: '2/2'} {1: 0} 46 46 184.0 46 46 184.0 () 505.83 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/2bfa37b6-bc13-4e9... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 34-94 (Bb1-Bb6) Piano 35-77 (B1-F5)
suite_dansante_en_jazz_2_strait {1: '2/2'} {1: 0} 40 39 160.0 76 76 304.0 (38], [39) 735.25 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/5c0b4b0a-eee3-491... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 55-93 (G3-A6) Piano 31-91 (G1-G6)
suite_dansante_en_jazz_3_waltz {1: '3/4'} {1: 0} 71 70 213.0 134 134 402.0 (68], [69, 70, 71) 989.00 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/876be800-80fe-437... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 56-93 (Ab3-A6) Piano 28-68 (E1-G#4)
suite_dansante_en_jazz_4_tango {1: '2/4'} {1: 0} 41 40 82.0 80 80 160.0 (40], [41) 267.50 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/44b22f8e-949f-464... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 57-89 (A3-F6) Piano 38-78 (D2-Gb5)
suite_dansante_en_jazz_5_slow {1: '2/2'} {1: 0} 42 41 168.0 65 65 260.0 (40], [41, 42) 859.33 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/3dbf5c4a-ef31-4a1... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 54-90 (F#3-F#6) Piano 34-69 (Bb1-A4)
suite_dansante_en_jazz_6_fox-trot {1: '2/2'} {1: 0} 50 50 200.0 82 82 328.0 () 711.33 ... https://imslp.org/wiki/Suite_dansante_en_Jazz_... https://musicbrainz.org/work/f3bc4a4f-0ba2-45e... Anna Yuferova https://viaf.org/viaf/180885757/#Schulhoff,_Er... Q89540 https://imslp.org/wiki/Special:ReverseLookup/2... Piano 38-90 (D2-F#6) Piano 26-94 (D1-A#6)

6 rows × 53 columns

Composition years histogram#

Hide source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
    hist_data,
    x="composed_end",
    color="corpus",
    labels=dict(
        composed_end="decade",
        count="pieces",
    ),
    color_discrete_map=corpus_name_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()

Dimensions#

Overview#

def make_overview_table(groupby, group_name="pieces"):
    n_groups = groupby.size().rename(group_name)
    absolute_numbers = dict(
        measures=groupby.last_mn.sum(),
        length=groupby.length_qb.sum(),
        notes=groupby.n_onsets.sum(),
        labels=groupby.label_count.sum(),
    )
    absolute = pd.DataFrame.from_dict(absolute_numbers)
    absolute = pd.concat([n_groups, absolute], axis=1)
    sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
    absolute = pd.concat([absolute, sum_row])
    return absolute


absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
pieces measures length notes labels
Suite dansante en jazz 6 286 1007 5390 488
sum 6 286 1007 5390 488
def summarize_dataset(D):
    all_metadata = D.get_metadata()
    summary = make_summary(all_metadata)
    return make_overview_table(summary.groupby(level=0))


corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())
|                                  |   pieces |   measures |   length |   notes |   labels |
|:---------------------------------|---------:|-----------:|---------:|--------:|---------:|
| schulhoff_suite_dansante_en_jazz |        6 |        286 |     1007 |    5390 |      488 |
| sum                              |        6 |        286 |     1007 |    5390 |      488 |

Measures#

all_measures = D.get_feature("measures")
print(
    f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
286 measures over 6 files.
mc mn quarterbeats duration_qb keysig timesig act_dur mc_offset numbering_offset dont_count barline breaks repeats next volta markers jump_bwd jump_fwd play_until
corpus piece i
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp 0 1 1 0 4.0 0 2/2 1 0 <NA> <NA> <NA> <NA> firstMeasure (2,) <NA> <NA> <NA> <NA> <NA>
1 2 2 4 4.0 0 2/2 1 0 <NA> <NA> <NA> <NA> <NA> (3,) <NA> <NA> <NA> <NA> <NA>
2 3 3 8 4.0 0 2/2 1 0 <NA> <NA> <NA> line <NA> (4,) <NA> <NA> <NA> <NA> <NA>
3 4 4 12 4.0 0 2/2 1 0 <NA> <NA> <NA> <NA> <NA> (5,) <NA> <NA> <NA> <NA> <NA>
4 5 5 16 4.0 0 2/2 1 0 <NA> <NA> <NA> <NA> <NA> (6,) <NA> <NA> <NA> <NA> <NA>
all_measures.get_default_analysis().plot_grouped()

Harmony labels#

All symbols, independent of the local key (the mode of which changes their semantics).

try:
    all_annotations = D.get_feature("harmonylabels").df
except Exception:
    all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
    display(all_annotations.head())
    print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
    no_chord = all_annotations.root.isna()
    if no_chord.sum() > 0:
        print(
            f"{no_chord.sum()} of them are not chords. Their values are:"
            f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
        )
    all_chords = all_annotations[~no_chord].copy()
    print(
        f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
        f"{len(all_chords.groupby(level=[0,1]))} documents."
    )
    all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
    all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
else:
    print("Dataset contains no annotations.")
mc mn quarterbeats duration_qb mc_onset mn_onset timesig staff voice volta ... numeral_or_applied_to_numeral intervals_over_bass intervals_over_root scale_degrees scale_degrees_and_mode scale_degrees_major scale_degrees_minor globalkey localkey chord
corpus piece i
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp 0 1 1 0 8.0 0 0 2/2 2 1 <NA> ... I (M3, P5) (M3, P5) (1, 3, 5) (1, 3, 5), major (1, 3, 5) (1, #3, 5) E I I(13#11)
1 3 3 8 1.0 0 0 2/2 2 1 <NA> ... i (M3, P5, M6) (m3, P5, m7) (b3, 5, b7, 1) (b3, 5, b7, 1), major (b3, 5, b7, 1) (3, 5, 7, 1) E I i65
2 3 3 9 1.0 1/4 1/4 2/2 2 1 <NA> ... bV (M3, a5) (M3, a5) (b2, 4, 6) (b2, 4, 6), major (b2, 4, 6) (b2, 4, #6) E I V+(9)/bV
3 3 3 10 4.0 1/2 1/2 2/2 2 1 <NA> ... bV (M3, P5, M7) (M3, P5, M7) (b5, b7, b2, 4) (b5, b7, b2, 4), major (b5, b7, b2, 4) (b5, 7, b2, 4) E I IM7(+13)/bV
4 4 4 14 2.0 1/2 1/2 2/2 2 1 <NA> ... bV (m3, P5, m7) (m3, P5, m7) (b5, bb7, b2, b4) (b5, bb7, b2, b4), major (b5, bb7, b2, b4) (b5, b7, b2, b4) E I i7(+13)/bV

5 rows × 52 columns

Concatenated annotation tables contains 478 rows.
Dataset contains 478 tokens and 250 types over 6 documents.