Notes#

Hide imports
import os

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting

import utils

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 500)
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "notes_stats"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("schulhoff_suite_dansante_en_jazz", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Erwin Schulhoff – Suite dansante en jazz version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Erwin Schulhoff – Suite dansante en jazz version v2.3
Datapackage 'schulhoff_suite_dansante_en_jazz' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'schulhoff_suite_dansante_en_jazz': ["'schulhoff_suite_dansante_en_jazz.measures' "
                                                              '(MuseScoreFacetName.MuseScoreMeasures)',
                                                              "'schulhoff_suite_dansante_en_jazz.notes' "
                                                              '(MuseScoreFacetName.MuseScoreNotes)',
                                                              "'schulhoff_suite_dansante_en_jazz.expanded' "
                                                              '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                              "'schulhoff_suite_dansante_en_jazz.chords' "
                                                              '(MuseScoreFacetName.MuseScoreChords)',
                                                              "'schulhoff_suite_dansante_en_jazz.metadata' "
                                                              '(FeatureName.Metadata)']}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}

Metadata#

filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)

all_metadata = filtered_D.get_metadata()
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:, :20]
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count annotated_key harmony_version annotators reviewers
corpus
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp {1: '2/2'} {1: 0} 46 46 184.0 46 46 184.0 () 505.83 706 317 0 0 97 E 2.3.0 Amelia Brey DK
chronological_order = utils.chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
notes_feature = filtered_D.get_feature("notes")
all_notes = notes_feature.df
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
5669 notes over 6 files.
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice volta chord_id gracenote midi name nominal_duration octave scalar tied tpc_name tpc
corpus piece i
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp 0 1 1 0 0 1.0 1/4 0 0 2/2 2 1 <NA> 5 <NA> 40 E2 1/4 2 1 <NA> E 4
1 1 1 1 1 1.0 1/4 1/4 1/4 2/2 2 1 <NA> 6 <NA> 52 E3 1/4 3 1 <NA> E 4
2 1 1 1 1 1.0 1/4 1/4 1/4 2/2 2 1 <NA> 6 <NA> 59 B3 1/4 3 1 <NA> B 5
3 1 1 1 1 0.5 1/8 1/4 1/4 2/2 1 1 <NA> 0 <NA> 68 G#4 1/8 4 1 <NA> G# 8
4 1 1 1 1 0.5 1/8 1/4 1/4 2/2 1 1 <NA> 0 <NA> 73 C#5 1/8 5 1 <NA> C# 7
def weight_notes(nl, group_col="midi", precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration  # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)


def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch] * count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
all_notes["corpus_name"] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby("corpus_name")
weighted_midi = pd.concat(
    [weight_notes(nl, "midi", precise=False) for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_midi.columns = ["dataset", "midi"]
weighted_midi
dataset midi
0 Schulhoff Suite Dansante En Jazz 26
1 Schulhoff Suite Dansante En Jazz 27
2 Schulhoff Suite Dansante En Jazz 28
3 Schulhoff Suite Dansante En Jazz 30
4 Schulhoff Suite Dansante En Jazz 30
... ... ...
2035 Schulhoff Suite Dansante En Jazz 91
2036 Schulhoff Suite Dansante En Jazz 93
2037 Schulhoff Suite Dansante En Jazz 93
2038 Schulhoff Suite Dansante En Jazz 93
2039 Schulhoff Suite Dansante En Jazz 94

2040 rows × 2 columns

# fig = px.violin(weighted_midi,
#                 x='dataset',
#                 y='midi',
#                 color='dataset',
#                 title="Corpus-wise distribution over registers (ambitus)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     midi='distribution of pitches by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000, height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
#     ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "ambitus_corpuswise_violins")
# fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat(
    [weight_notes(nl, "tpc") for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_tpc.columns = ["dataset", "tpc"]
weighted_tpc
dataset tpc
0 Schulhoff Suite Dansante En Jazz -8
1 Schulhoff Suite Dansante En Jazz -8
2 Schulhoff Suite Dansante En Jazz -8
3 Schulhoff Suite Dansante En Jazz -8
4 Schulhoff Suite Dansante En Jazz -8
... ... ...
8130 Schulhoff Suite Dansante En Jazz 14
8131 Schulhoff Suite Dansante En Jazz 14
8132 Schulhoff Suite Dansante En Jazz 14
8133 Schulhoff Suite Dansante En Jazz 14
8134 Schulhoff Suite Dansante En Jazz 15

8135 rows × 2 columns

As violin plot#

# fig = px.violin(weighted_tpc,
#                 x='dataset',
#                 y='tpc',
#                 color='dataset',
#                 title="Corpus-wise distribution over line of fifths (tonal pitch classes)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     tpc='distribution of tonal pitch classes by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000,
#                 height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
#     ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
#     zerolinecolor='grey',
#     zeroline=True
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "pitch_class_distributions_corpuswise_violins")
# fig.show()
(all_notes)
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice volta chord_id gracenote midi name nominal_duration octave scalar tied tpc_name tpc corpus_name
corpus piece i
schulhoff_suite_dansante_en_jazz suite_dansante_en_jazz_1_stomp 0 1 1 0 0 1.0 1/4 0 0 2/2 2 1 <NA> 5 <NA> 40 E2 1/4 2 1 <NA> E 4 Schulhoff Suite Dansante En Jazz
1 1 1 1 1 1.0 1/4 1/4 1/4 2/2 2 1 <NA> 6 <NA> 52 E3 1/4 3 1 <NA> E 4 Schulhoff Suite Dansante En Jazz
2 1 1 1 1 1.0 1/4 1/4 1/4 2/2 2 1 <NA> 6 <NA> 59 B3 1/4 3 1 <NA> B 5 Schulhoff Suite Dansante En Jazz
3 1 1 1 1 0.5 1/8 1/4 1/4 2/2 1 1 <NA> 0 <NA> 68 G#4 1/8 4 1 <NA> G# 8 Schulhoff Suite Dansante En Jazz
4 1 1 1 1 0.5 1/8 1/4 1/4 2/2 1 1 <NA> 0 <NA> 73 C#5 1/8 5 1 <NA> C# 7 Schulhoff Suite Dansante En Jazz
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
suite_dansante_en_jazz_6_fox-trot 924 50 50 197 197 1.0 1/4 1/4 1/4 2/2 2 1 <NA> 510 <NA> 39 Eb2 1/4 2 1 <NA> Eb -3 Schulhoff Suite Dansante En Jazz
925 50 50 198 198 0.5 1/8 1/2 1/2 2/2 1 2 <NA> 508 <NA> 61 Db4 1/8 4 1 <NA> Db -5 Schulhoff Suite Dansante En Jazz
926 50 50 198 198 0.5 1/8 1/2 1/2 2/2 1 2 <NA> 508 <NA> 67 G4 1/8 4 1 <NA> G 1 Schulhoff Suite Dansante En Jazz
927 50 50 198 198 0.5 1/8 1/2 1/2 2/2 1 1 <NA> 507 <NA> 71 Cb5 1/8 5 1 <NA> Cb -7 Schulhoff Suite Dansante En Jazz
928 50 50 198 198 0.5 1/8 1/2 1/2 2/2 1 1 <NA> 507 <NA> 76 Fb5 1/8 5 1 <NA> Fb -8 Schulhoff Suite Dansante En Jazz

5669 rows × 23 columns

width = 1400
height = 800

weighted_pitch_values = pd.concat(
    [
        weighted_midi.rename(columns={"midi": "value"}),
        weighted_tpc.rename(columns={"tpc": "value"}),
    ],
    keys=["MIDI pitch", "Tonal pitch class"],
    names=["distribution"],
).reset_index(level=[0, 1])

fig = plotting.make_violin_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Dark24,
    traces_settings=dict(
        spanmode="hard",
        width=1,
        # scalemode='width'
    ),
    layout=dict(
        showlegend=False,
        margin=dict(
            t=0,
            b=0,
            l=0,
            r=0,
        ),
    ),
    x_axis=dict(
        # tickangle=45,
        tickfont_size=15
    ),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=dict(title_text=""))
save_figure_as(fig, "notes_violin", width=width, height=height)
fig
fig = plotting.make_box_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    # box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Light24,
    # traces_settings=dict(spanmode='hard'),
    layout=dict(showlegend=False, margin=dict(t=0)),
    x_axis=dict(tickangle=45, tickfont_size=15),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=True)
save_figure_as(fig, "notes_box", width=width, height=height)
fig

As bar plots#

bar_data = all_notes.groupby("tpc").duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max() + 1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(
    bar_data,
    x="tpc",
    y="duration_qb",
    labels=dict(tpc="Named pitch class", duration_qb="Duration in quarter notes"),
    color_discrete_sequence=utils.CORPUS_COLOR_SCALE,
    width=1000,
    height=300,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_absolute_bars")
fig.show()
scatter_data = all_notes.groupby(["corpus_name", "tpc"]).duration_qb.sum().reset_index()
fig = px.bar(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    width=1000,
    height=500,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_corpuswise_absolute_bars")
fig.show()

As scatter plots#

fig = px.scatter(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    facet_col="corpus_name",
    facet_col_wrap=3,
    facet_col_spacing=0.03,
    width=1000,
    height=1000,
)
fig.update_traces(mode="lines+markers")
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT, showlegend=False)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=[-12, -6, 0, 6, 12, 18],
    ticktext=["Dbb", "Gb", "C", "F#", "B#", "E##"],
    visible=True,
)
fig.update_yaxes(zeroline=False, matches=None, showticklabels=True)
save_figure_as(fig, "pitch_class_distribution_corpuswise_scatter")
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1, 5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1, 5)].duration_qb.sum()
entire = no_accidental + with_accidental
(
    f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = "
    f"{no_accidental / entire}"
)
'Fraction of note duration without accidental of the entire durations: 2232.666666666667 / 4068.2500000000005 = 0.5488027202523608'

Notes and staves#

print("Distribution of notes over staves:")
utils.value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 3220 56.8
2 2449 43.2