Notes#

Hide imports
import os

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting

import utils

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 500)
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "notes_stats"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("frescobaldi_fiori_musicali", corpus_release="v2.4")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Girolamo Frescobaldi (1583-1643) – Fiori Musicali, op. 12 (1635) version v2.4")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Girolamo Frescobaldi (1583-1643) – Fiori Musicali, op. 12 (1635) version v2.4
Datapackage 'frescobaldi_fiori_musicali' @ v2.4
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'frescobaldi_fiori_musicali': ["'frescobaldi_fiori_musicali.measures' "
                                                        '(MuseScoreFacetName.MuseScoreMeasures)',
                                                        "'frescobaldi_fiori_musicali.notes' "
                                                        '(MuseScoreFacetName.MuseScoreNotes)',
                                                        "'frescobaldi_fiori_musicali.expanded' "
                                                        '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                        "'frescobaldi_fiori_musicali.chords' "
                                                        '(MuseScoreFacetName.MuseScoreChords)',
                                                        "'frescobaldi_fiori_musicali.metadata' "
                                                        '(FeatureName.Metadata)']}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}

Metadata#

filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)

all_metadata = filtered_D.get_metadata()
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:, :20]
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count annotated_key composed_start composed_end composed_source composer
corpus
frescobaldi_fiori_musicali 12.01_Toccata_avanti_la_Messa_della_Domenica {1: '4/2'} {1: 0} 8 8 64.0 8 8 64.0 244.0 200 121 0 0 57 d 1635 1635 Bärenreiter Verlag (https://imslp.org/wiki/Spe... Girolamo Frescobaldi
chronological_order = utils.chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
notes_feature = filtered_D.get_feature("notes")
all_notes = notes_feature.df
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
19370 notes over 47 files.
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice chord_id midi name nominal_duration octave scalar tied tpc_name tpc
corpus piece i
frescobaldi_fiori_musicali 12.01_Toccata_avanti_la_Messa_della_Domenica 0 1 1 0 0 6.0 3/2 0 0 4/2 2 2 17 50 D3 1 3 3/2 <NA> D 2
1 1 1 0 0 2.0 1/2 0 0 4/2 2 1 11 65 F4 1/2 4 1 <NA> F -1
2 1 1 0 0 2.0 1/2 0 0 4/2 1 2 6 69 A4 1/2 4 1 <NA> A 3
3 1 1 0 0 2.0 1/2 0 0 4/2 1 1 0 74 D5 1/2 5 1 <NA> D 2
4 1 1 2 2 1.0 1/4 1/2 1/2 4/2 2 1 12 62 D4 1/4 4 1 <NA> D 2
def weight_notes(nl, group_col="midi", precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration  # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)


def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch] * count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
all_notes["corpus_name"] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby("corpus_name")
weighted_midi = pd.concat(
    [weight_notes(nl, "midi", precise=False) for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_midi.columns = ["dataset", "midi"]
weighted_midi
dataset midi
0 Frescobaldi Fiori Musicali 33
1 Frescobaldi Fiori Musicali 33
2 Frescobaldi Fiori Musicali 33
3 Frescobaldi Fiori Musicali 33
4 Frescobaldi Fiori Musicali 33
... ... ...
63951 Frescobaldi Fiori Musicali 78
63952 Frescobaldi Fiori Musicali 78
63953 Frescobaldi Fiori Musicali 78
63954 Frescobaldi Fiori Musicali 78
63955 Frescobaldi Fiori Musicali 79

63956 rows × 2 columns

# fig = px.violin(weighted_midi,
#                 x='dataset',
#                 y='midi',
#                 color='dataset',
#                 title="Corpus-wise distribution over registers (ambitus)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     midi='distribution of pitches by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000, height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
#     ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "ambitus_corpuswise_violins")
# fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat(
    [weight_notes(nl, "tpc") for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_tpc.columns = ["dataset", "tpc"]
weighted_tpc
dataset tpc
0 Frescobaldi Fiori Musicali -4
1 Frescobaldi Fiori Musicali -4
2 Frescobaldi Fiori Musicali -3
3 Frescobaldi Fiori Musicali -3
4 Frescobaldi Fiori Musicali -3
... ... ...
5809 Frescobaldi Fiori Musicali 8
5810 Frescobaldi Fiori Musicali 8
5811 Frescobaldi Fiori Musicali 8
5812 Frescobaldi Fiori Musicali 8
5813 Frescobaldi Fiori Musicali 9

5814 rows × 2 columns

As violin plot#

# fig = px.violin(weighted_tpc,
#                 x='dataset',
#                 y='tpc',
#                 color='dataset',
#                 title="Corpus-wise distribution over line of fifths (tonal pitch classes)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     tpc='distribution of tonal pitch classes by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000,
#                 height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
#     ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
#     zerolinecolor='grey',
#     zeroline=True
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "pitch_class_distributions_corpuswise_violins")
# fig.show()
(all_notes)
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice chord_id midi name nominal_duration octave scalar tied tpc_name tpc corpus_name
corpus piece i
frescobaldi_fiori_musicali 12.01_Toccata_avanti_la_Messa_della_Domenica 0 1 1 0 0 6.0 3/2 0 0 4/2 2 2 17 50 D3 1 3 3/2 <NA> D 2 Frescobaldi Fiori Musicali
1 1 1 0 0 2.0 1/2 0 0 4/2 2 1 11 65 F4 1/2 4 1 <NA> F -1 Frescobaldi Fiori Musicali
2 1 1 0 0 2.0 1/2 0 0 4/2 1 2 6 69 A4 1/2 4 1 <NA> A 3 Frescobaldi Fiori Musicali
3 1 1 0 0 2.0 1/2 0 0 4/2 1 1 0 74 D5 1/2 5 1 <NA> D 2 Frescobaldi Fiori Musicali
4 1 1 2 2 1.0 1/4 1/2 1/2 4/2 2 1 12 62 D4 1/4 4 1 <NA> D 2 Frescobaldi Fiori Musicali
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
12.47_Capriccio_sopra_la_Girolmeta 1322 101 101 587 587 1.0 1/4 5/4 5/4 6/4 1 1 1317 66 F#4 1/4 4 1 <NA> F# 6 Frescobaldi Fiori Musicali
1323 102 102 588 588 6.0 3/2 0 0 6/4 2 2 1326 43 G2 1 2 3/2 <NA> G 1 Frescobaldi Fiori Musicali
1324 102 102 588 588 6.0 3/2 0 0 6/4 2 1 1325 59 B3 1 3 3/2 <NA> B 5 Frescobaldi Fiori Musicali
1325 102 102 588 588 6.0 3/2 0 0 6/4 1 2 1324 62 D4 1 4 3/2 <NA> D 2 Frescobaldi Fiori Musicali
1326 102 102 588 588 6.0 3/2 0 0 6/4 1 1 1323 67 G4 1 4 3/2 <NA> G 1 Frescobaldi Fiori Musicali

19370 rows × 21 columns

width = 1400
height = 800

weighted_pitch_values = pd.concat(
    [
        weighted_midi.rename(columns={"midi": "value"}),
        weighted_tpc.rename(columns={"tpc": "value"}),
    ],
    keys=["MIDI pitch", "Tonal pitch class"],
    names=["distribution"],
).reset_index(level=[0, 1])

fig = plotting.make_violin_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Dark24,
    traces_settings=dict(
        spanmode="hard",
        width=1,
        # scalemode='width'
    ),
    layout=dict(
        showlegend=False,
        margin=dict(
            t=0,
            b=0,
            l=0,
            r=0,
        ),
    ),
    x_axis=dict(
        # tickangle=45,
        tickfont_size=15
    ),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=dict(title_text=""))
save_figure_as(fig, "notes_violin", width=width, height=height)
fig
fig = plotting.make_box_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    # box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Light24,
    # traces_settings=dict(spanmode='hard'),
    layout=dict(showlegend=False, margin=dict(t=0)),
    x_axis=dict(tickangle=45, tickfont_size=15),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=True)
save_figure_as(fig, "notes_box", width=width, height=height)
fig

As bar plots#

bar_data = all_notes.groupby("tpc").duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max() + 1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(
    bar_data,
    x="tpc",
    y="duration_qb",
    labels=dict(tpc="Named pitch class", duration_qb="Duration in quarter notes"),
    color_discrete_sequence=utils.CORPUS_COLOR_SCALE,
    width=1000,
    height=300,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_absolute_bars")
fig.show()
scatter_data = all_notes.groupby(["corpus_name", "tpc"]).duration_qb.sum().reset_index()
fig = px.bar(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    width=1000,
    height=500,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_corpuswise_absolute_bars")
fig.show()

As scatter plots#

fig = px.scatter(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    facet_col="corpus_name",
    facet_col_wrap=3,
    facet_col_spacing=0.03,
    width=1000,
    height=1000,
)
fig.update_traces(mode="lines+markers")
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT, showlegend=False)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=[-12, -6, 0, 6, 12, 18],
    ticktext=["Dbb", "Gb", "C", "F#", "B#", "E##"],
    visible=True,
)
fig.update_yaxes(zeroline=False, matches=None, showticklabels=True)
save_figure_as(fig, "pitch_class_distribution_corpuswise_scatter")
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1, 5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1, 5)].duration_qb.sum()
entire = no_accidental + with_accidental
(
    f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = "
    f"{no_accidental / entire}"
)
'Fraction of note duration without accidental of the entire durations: 28580.416666666668 / 31975.583333333336 = 0.8938200241329973'

Notes and staves#

print("Distribution of notes over staves:")
utils.value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 10442 53.91
2 8928 46.09