Overview#

This notebook gives a general overview of the features included in the dataset.

Hide imports
import os
from collections import defaultdict, Counter
from fractions import Fraction

from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

from utils import CADENCE_COLORS, CORPUS_COLOR_SCALE, STD_LAYOUT, TYPE_COLORS, color_background, corpus_mean_composition_years, value_count_df, get_corpus_display_name, get_repo_name, print_heading, resolve_dir
Hide source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
ANNOTATED_ONLY = os.getenv("ANNOTATED_ONLY", "True").lower() in ('true', '1', 't')
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
print(f"ANNOTATED_ONLY: {ANNOTATED_ONLY}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------

CORPUS_PATH: '/home/runner/work/workflow_deployment/distant_listening_corpus'
ANNOTATED_ONLY: True
Hide source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------

Data repo 'distant_listening_corpus' @ e1afefe
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
---------------------------------------------------------------------------
DeprecationWarning                        Traceback (most recent call last)
Cell In[5], line 4
      2     annotated_view = dataset.data.get_view('annotated')
      3     annotated_view.include('facets', 'measures', 'notes$', 'expanded')
----> 4     annotated_view.fnames_with_incomplete_facets = False
      5     dataset.data.set_view(annotated_view)
      6 dataset.data.parse_tsv(choose='auto')

File ~/.local/lib/python3.10/site-packages/ms3/view.py:124, in View.fnames_with_incomplete_facets(self, value)
    122 @fnames_with_incomplete_facets.setter
    123 def fnames_with_incomplete_facets(self, value):
--> 124     raise DeprecationWarning(
    125         "'fnames_with_incomplete_facets' was renamed to  'pieces_with_incomplete_facets' in "
    126         "ms3 v2."
    127     )

DeprecationWarning: 'fnames_with_incomplete_facets' was renamed to  'pieces_with_incomplete_facets' in ms3 v2.
Hide data loading
all_metadata = dataset.data.metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
print(f"Metadata covers {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_notes = dataset.get_facet('notes')
all_measures = dataset.get_facet('measures')
mean_composition_years = corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, CORPUS_COLOR_SCALE))
corpus_names = {corp: get_corpus_display_name(corp) for corp in chronological_order}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {corpus_names[corp]: color for corp, color in corpus_colors.items()}

Composition dates#

This section relies on the dataset’s metadata.

valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors='coerce')
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors='coerce')
print(f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
      f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}.")

Mean composition years per corpus#

Hide source
summary = all_metadata.copy()
summary.length_qb = all_measures.groupby(level=[0,1]).act_dur.sum() * 4.0
summary = pd.concat([summary,
                     all_notes.groupby(level=[0,1]).size().rename('notes'),
                    ], axis=1)
bar_data = pd.concat([mean_composition_years.rename('year'), 
                      summary.groupby(level='corpus').size().rename('pieces')],
                     axis=1
                    ).reset_index()
fig = px.bar(bar_data, x='year', y='pieces', color='corpus',
             color_discrete_map=corpus_colors,
            )
fig.update_traces(width=5)
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_traces(width=5)

Composition years histogram#

Hide source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(hist_data, x='composed_end', color='corpus',
                   labels=dict(composed_end='decade',
                               count='pieces',
                              ),
                   color_discrete_map=corpus_name_colors,
                  )
fig.update_traces(xbins=dict(
    size=10
))
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.show()

Dimensions#

Overview#

Hide source
corpus_metadata = summary.groupby(level=0)
n_pieces = corpus_metadata.size().rename('pieces')
absolute_numbers = dict(
    measures = corpus_metadata.last_mn.sum(),
    length = corpus_metadata.length_qb.sum(),
    notes = corpus_metadata.notes.sum(),
    labels = corpus_metadata.label_count.sum(),
)
absolute = pd.DataFrame.from_dict(absolute_numbers)
absolute = pd.concat([n_pieces, absolute], axis=1)
sum_row = pd.DataFrame(absolute.sum(), columns=['sum']).T
absolute = pd.concat([absolute, sum_row])
relative = absolute.div(n_pieces, axis=0)
complete_summary = pd.concat([absolute, relative, absolute.iloc[:1,2:].div(absolute.measures, axis=0)], axis=1, keys=['absolute', 'per piece', 'per measure'])
complete_summary = complete_summary.apply(pd.to_numeric).round(2)
complete_summary.index = complete_summary.index.map(dict(corpus_names, sum='sum'))
complete_summary

Measures#

print(f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files.")
all_measures.head()
print("Distribution of time signatures per XML measure (MC):")
all_measures.timesig.value_counts(dropna=False)

Harmony labels#

All symbols, independent of the local key (the mode of which changes their semantics).

try:
    all_annotations = dataset.get_facet('expanded')
except Exception:
    all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
    display(all_annotations.head())
    print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
    no_chord = all_annotations.root.isna()
    if no_chord.sum() > 0:
        print(f"{no_chord.sum()} of them are not chords. Their values are: {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}")
    all_chords = all_annotations[~no_chord].copy()
    print(f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over {len(all_chords.groupby(level=[0,1]))} documents.")
    all_annotations['corpus_name'] = all_annotations.index.get_level_values(0).map(get_corpus_display_name)
    all_chords['corpus_name'] = all_chords.index.get_level_values(0).map(get_corpus_display_name)
else:
    print(f"Dataset contains no annotations.")