Cadences#

Hide imports
import os
from collections import defaultdict, Counter

from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

from utils import STD_LAYOUT, CADENCE_COLORS, color_background, value_count_df, get_repo_name, print_heading, resolve_dir
Hide source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------

CORPUS_PATH: '/home/runner/work/workflow_deployment/distant_listening_corpus'
Hide source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------

Data repo 'distant_listening_corpus' @ e1afefe
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
---------------------------------------------------------------------------
DeprecationWarning                        Traceback (most recent call last)
Cell In[5], line 3
      1 annotated_view = dataset.data.get_view('annotated')
      2 annotated_view.include('facets', 'expanded')
----> 3 annotated_view.fnames_with_incomplete_facets = False
      4 dataset.data.set_view(annotated_view)
      5 dataset.data.parse_tsv(choose='auto')

File ~/.local/lib/python3.10/site-packages/ms3/view.py:124, in View.fnames_with_incomplete_facets(self, value)
    122 @fnames_with_incomplete_facets.setter
    123 def fnames_with_incomplete_facets(self, value):
--> 124     raise DeprecationWarning(
    125         "'fnames_with_incomplete_facets' was renamed to  'pieces_with_incomplete_facets' in "
    126         "ms3 v2."
    127     )

DeprecationWarning: 'fnames_with_incomplete_facets' was renamed to  'pieces_with_incomplete_facets' in ms3 v2.

Metadata#

all_metadata = dataset.data.metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
print(f"Concatenated 'metadata.tsv' files cover {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:,:20]

All annotation labels from the selected pieces#

all_labels = dataset.data.get_facet('expanded')

print(f"{len(all_labels.index)} hand-annotated harmony labels:")
all_labels.iloc[:20].style.apply(color_background, subset="chord")

Filtering out pieces without cadence annotations#

hascadence = dc.HasCadenceAnnotationsFilter().process_data(dataset)
assert () in hascadence.indices and len(hascadence.indices[()]) > 0, "No cadences found."
print(f"Before: {len(dataset.indices[()])} pieces; after removing those without cadence labels: {len(hascadence.indices[()])}")

Show corpora containing pieces with cadence annotations#

grouped_by_corpus = dc.CorpusGrouper().process_data(hascadence)
corpora = {group[0]: f"{len(ixs)} pieces" for group, ixs in  grouped_by_corpus.indices.items()}
print(f"{len(corpora)} corpora with {sum(map(len, grouped_by_corpus.indices.values()))} pieces containing cadence annotations:")
corpora

All annotation labels from the selected pieces#

all_labels = hascadence.get_facet('expanded')

print(f"{len(all_labels.index)} hand-annotated harmony labels:")
all_labels.iloc[:10, 13:].style.apply(color_background, subset="chord")

Metadata#

dataset_metadata = hascadence.data.metadata()
hascadence_metadata = dataset_metadata.loc[hascadence.indices[()]]
hascadence_metadata.index.rename('dataset', level=0, inplace=True)
hascadence_metadata.head()
mean_composition_years = hascadence_metadata.groupby(level=0).composed_end.mean().astype(int).sort_values()
chronological_order = mean_composition_years.index.to_list()
bar_data = pd.concat([mean_composition_years.rename('year'), 
                      hascadence_metadata.groupby(level='dataset').size().rename('pieces')],
                     axis=1
                    ).reset_index()
fig = px.bar(bar_data, x='year', y='pieces', color='dataset', title='Pieces contained in the dataset')
fig.update_traces(width=5)

Overall#

  • PAC: Perfect Authentic Cadence

  • IAC: Imperfect Authentic Cadence

  • HC: Half Cadence

  • DC: Deceptive Cadence

  • EC: Evaded Cadence

  • PC: Plagal Cadence

print(f"{all_labels.cadence.notna().sum()} cadence labels.")
value_count_df(all_labels.cadence)
px.pie(all_labels[all_labels.cadence.notna()], names="cadence", color="cadence", color_discrete_map=CADENCE_COLORS)

Per dataset#

cadence_count_per_dataset = all_labels.groupby("corpus").cadence.value_counts()
cadence_fraction_per_dataset = cadence_count_per_dataset / cadence_count_per_dataset.groupby(level=0).sum()
px.bar(cadence_fraction_per_dataset.rename('count').reset_index(), x='corpus', y='count', color='cadence',
      color_discrete_map=CADENCE_COLORS, category_orders=dict(dataset=chronological_order))
fig = px.pie(cadence_count_per_dataset.rename('count').reset_index(), names='cadence', color='cadence', values='count', 
       facet_col='corpus', facet_col_wrap=4, height=2000, color_discrete_map=CADENCE_COLORS)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**STD_LAYOUT)

Per phrase#

Number of cadences per phrase#

segmented = dc.PhraseSlicer().process_data(grouped_by_corpus)
phrases = segmented.get_slice_info()
phrase_segments = segmented.get_facet("expanded")
phrase_gpb = phrase_segments.groupby(level=[0,1,2])
local_keys_per_phrase = phrase_gpb.localkey.unique().map(tuple)
n_local_keys_per_phrase = local_keys_per_phrase.map(len)
phrases_with_keys = pd.concat([n_local_keys_per_phrase.rename('n_local_keys'),
                               local_keys_per_phrase.rename('local_keys'),
                               phrases], axis=1)
phrases_with_cadences = pd.concat([
    phrase_gpb.cadence.nunique().rename('n_cadences'),
    phrase_gpb.cadence.unique().rename('cadences').map(lambda l: tuple(e for e in l if not pd.isnull(e))),
    phrases_with_keys
], axis=1)
value_count_df(phrases_with_cadences.n_cadences, counts="#phrases")
n_cad = phrases_with_cadences.groupby(level='corpus').n_cadences.value_counts().rename('counts').reset_index().sort_values('n_cadences')
n_cad.n_cadences = n_cad.n_cadences.astype(str)
fig = px.bar(n_cad, x='corpus', y='counts', color='n_cadences', height=800, barmode='group',
             labels=dict(n_cadences="#cadences in a phrase"),
             category_orders=dict(dataset=chronological_order)
      )
fig.show()

Combinations of cadence types for phrases with more than one cadence#

value_count_df(phrases_with_cadences[phrases_with_cadences.n_cadences > 1].cadences)

Positioning of cadences within phrases#

df_rows = []
y_position = 0
for ix in phrases_with_cadences[phrases_with_cadences.n_cadences > 0].sort_values('duration_qb').index:
    df = phrase_segments.loc[ix]
    description = str(ix)
    if df.cadence.notna().any():
        interval = ix[2]
        df_rows.append((y_position, interval.length, "end of phrase", description))
        start_pos = interval.left
        cadences = df.loc[df.cadence.notna(), ['quarterbeats', 'cadence']]
        cadences.quarterbeats -= start_pos
        for cadence_x, cadence_type in cadences.itertuples(index=False, name=None):
            df_rows.append((y_position, cadence_x, cadence_type, description))
        y_position += 1
    #else:
    #    df_rows.append((y_position, pd.NA, pd.NA, description))
    
data = pd.DataFrame(df_rows, columns=["phrase_ix", "x", "marker", "description"])
fig = px.scatter(data[data.x.notna()], x='x', y="phrase_ix", color="marker", hover_name="description", height=3000,
                labels=dict(marker='legend'), color_discrete_map=CADENCE_COLORS)
fig.update_traces(marker_size=5)
fig.update_yaxes(autorange="reversed")
fig.show()

Cadence ultima#

phrase_segments = segmented.get_facet("expanded")
cadence_selector = phrase_segments.cadence.notna()
missing_chord_selector = phrase_segments.chord.isna()
cadence_with_missing_chord_selector = cadence_selector & missing_chord_selector
missing = phrase_segments[cadence_with_missing_chord_selector]
expanded = ms3.expand_dcml.expand_labels(phrase_segments[cadence_with_missing_chord_selector], propagate=False, chord_tones=True, skip_checks=True)
phrase_segments.loc[cadence_with_missing_chord_selector] = expanded
print(f"Ultima harmony missing for {(phrase_segments.cadence.notna() & phrase_segments.bass_note.isna()).sum()} cadence labels.")

Ultimae as Roman numeral#

def highlight(row, color="#ffffb3"):
    if row.counts < 10:
        return [None, None, None, None]
    else:
        return ["background-color: {color};"] * 4

cadence_counts = all_labels.cadence.value_counts()
ultima_root = phrase_segments.groupby(['localkey_is_minor', 'cadence']).numeral.value_counts().rename('counts').to_frame().reset_index()
ultima_root.localkey_is_minor = ultima_root.localkey_is_minor.map({False: 'in major', True: 'in minor'})
#ultima_root.style.apply(highlight, axis=1)
fig = px.pie(ultima_root, names='numeral', values='counts', 
             facet_row='cadence', facet_col='localkey_is_minor', 
             height=1500,
             category_orders={'cadence': cadence_counts.index},
            )
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(**STD_LAYOUT)
fig.show()
#phrase_segments.groupby(level=[0,1,2], group_keys=False).apply(lambda df: df if ((df.cadence == 'PAC') & (df.numeral == 'V')).any() else None)

Ultimae bass note as scale degree#

ultima_bass = phrase_segments.groupby(['localkey_is_minor','cadence']).bass_note.value_counts().rename('counts').reset_index()
ultima_bass.bass_note = ms3.transform(ultima_bass, ms3.fifths2sd, dict(fifths='bass_note', minor='localkey_is_minor'))
ultima_bass.localkey_is_minor = ultima_bass.localkey_is_minor.map({False: 'in major', True: 'in minor'})
#ultima_bass.style.apply(highlight, axis=1)
fig = px.pie(ultima_bass, names='bass_note', values='counts', 
             facet_row='cadence', facet_col='localkey_is_minor', 
             height=1500, 
             category_orders={'cadence': cadence_counts.index},
            )
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(**STD_LAYOUT)
fig.show()

Chord progressions#

PACs with ultima I/i#

def remove_immediate_duplicates(l):
    return tuple(a for a, b in zip(l, (None, ) + l) if a != b)

def get_progressions(selected='PAC', last_row={}, feature='chord', dataset=None, as_series=True, remove_duplicates=False):
    """Uses the nonlocal variable phrase_segments."""
    last_row = {k: v if isinstance(v, tuple) else (v,) for k, v in last_row.items()}
    progressions = []

    for (corp, fname, *_), df in phrase_segments[phrase_segments[feature].notna()].groupby(level=[0,1,2]):
        if dataset is not None and dataset not in corp:
            continue
        if (df.cadence == selected).fillna(False).any():
            # remove chords after the last cadence label
            df = df[df.cadence.fillna(method='bfill').notna()]
            # group segments leading up to a cadence label
            cadence_groups = df.cadence.notna().shift().fillna(False).cumsum()
            for i, cadence in df.groupby(cadence_groups):
                last_r = cadence.iloc[-1]
                typ = last_r.cadence
                if typ != selected:
                    continue
                if any(last_r[feat] not in values for feat, values in last_row.items()):
                    continue
                if remove_duplicates:
                    progressions.append(remove_immediate_duplicates(cadence[feature].to_list()))
                else:
                    progressions.append(tuple(cadence[feature]))
    if as_series:
        return pd.Series(progressions, dtype='object')
    return progressions
chord_progressions = get_progressions('PAC', dict(numeral=('I', 'i')), 'chord')
print(f"Progressions for {len(chord_progressions)} cadences:")
value_count_df(chord_progressions, "chord progressions")
numeral_progressions = get_progressions('PAC', dict(numeral=('I', 'i')), 'numeral')
value_count_df(numeral_progressions, "numeral progressions")
numeral_prog_no_dups = numeral_progressions.map(remove_immediate_duplicates)
value_count_df(numeral_prog_no_dups)

PACs ending on scale degree 1#

Scale degrees expressed w.r.t. major scale, regardless of actual key.

bass_progressions = get_progressions('PAC', dict(bass_note=0), 'bass_note')
bass_prog = bass_progressions.map(ms3.fifths2sd)
print(f"Progressions for {len(bass_progressions)} cadences:")
value_count_df(bass_prog, "bass progressions")
bass_prog_no_dups = bass_prog.map(remove_immediate_duplicates)
value_count_df(bass_prog_no_dups)
def make_sankey(data, labels, node_pos=None, margin={'l': 10, 'r': 10, 'b': 10, 't': 10}, pad=20, color='auto', **kwargs):
    if color=='auto':
        unique_labels = set(labels)
        color_step = 100 / len(unique_labels)
        unique_colors = {label: f'hsv({round(i*color_step)}%,100%,100%)' for i, label in enumerate(unique_labels)}
        color = list(map(lambda l: unique_colors[l], labels))
    fig = go.Figure(go.Sankey(
        arrangement = 'snap',
        node = dict(
          pad = pad,
          #thickness = 20,
          #line = dict(color = "black", width = 0.5),
          label = labels,
          x = [node_pos[i][0] if i in node_pos else 0 for i in range(len(labels))] if node_pos is not None else None,
          y = [node_pos[i][1] if i in node_pos else 0 for i in range(len(labels))] if node_pos is not None else None,
          color = color,
          ),
        link = dict(
          source = data.source,
          target = data.target,
          value = data.value
          ),
        ),
     )

    fig.update_layout(margin=margin, **kwargs)
    return fig

def progressions2graph_data(progressions, cut_at_stage=None):
    stage_nodes = defaultdict(dict)
    edge_weights = Counter()
    node_counter = 0
    for progression in progressions:
        previous_node = None
        for stage, current in enumerate(reversed(progression)):
            if cut_at_stage and stage > cut_at_stage:
                break
            if current in stage_nodes[stage]:
                current_node = stage_nodes[stage][current]
            else:
                stage_nodes[stage][current] = node_counter
                current_node = node_counter
                node_counter += 1
            if previous_node is not None:
                edge_weights.update([(current_node, previous_node)])
            previous_node = current_node
    return stage_nodes, edge_weights

def graph_data2sankey(stage_nodes, edge_weights):
    data = pd.DataFrame([(u, v, w) for (u, v), w in edge_weights.items()], columns = ['source', 'target', 'value'])
    node2label = {node: label for stage, nodes in stage_nodes.items() for label, node in nodes.items()}
    labels = [node2label[i] for i in range(len(node2label))]
    return make_sankey(data, labels)

def plot_progressions(progressions, cut_at_stage=None):
    stage_nodes, edge_weights = progressions2graph_data(progressions, cut_at_stage=cut_at_stage)
    return graph_data2sankey(stage_nodes, edge_weights)

Chordal roots for the 3 last stages#

plot_progressions(numeral_prog_no_dups, cut_at_stage=3)

Complete chords for the last four stages in major#

pac_major = get_progressions('PAC', dict(numeral='I', localkey_is_minor=False), 'chord')
plot_progressions(pac_major, cut_at_stage=4)

Bass degrees for the last 6 stages.#

plot_progressions(bass_prog_no_dups, cut_at_stage=7)

Bass degrees without accidentals#

def remove_sd_accidentals(t):
    return tuple(map(lambda sd: sd[-1], t))
                  
bass_prog_no_acc_no_dup = bass_prog.map(remove_sd_accidentals).map(remove_immediate_duplicates)
plot_progressions(bass_prog_no_acc_no_dup, cut_at_stage=7)

HCs ending on V#

half = get_progressions('HC', dict(numeral='V'), 'bass_note').map(ms3.fifths2sd)
print(f"Progressions for {len(half)} cadences:")
plot_progressions(half.map(remove_immediate_duplicates), cut_at_stage=5)