Cadences#

Hide imports
%load_ext autoreload
%autoreload 2
import os
from collections import Counter, defaultdict

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import plotting
from dimcat.steps import filters, groupers, slicers

import utils
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "cadences"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("beethoven_piano_sonatas", corpus_release="v2.5")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Ludwig van Beethoven – Piano Sonatas version v2.5")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Ludwig van Beethoven – Piano Sonatas version v2.5
Datapackage 'beethoven_piano_sonatas' @ v2.5
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'beethoven_piano_sonatas': ["'beethoven_piano_sonatas.measures' "
                                                     '(MuseScoreFacetName.MuseScoreMeasures)',
                                                     "'beethoven_piano_sonatas.notes' "
                                                     '(MuseScoreFacetName.MuseScoreNotes)',
                                                     "'beethoven_piano_sonatas.expanded' "
                                                     '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                     "'beethoven_piano_sonatas.chords' "
                                                     '(MuseScoreFacetName.MuseScoreChords)',
                                                     "'beethoven_piano_sonatas.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}
try:
    cadence_labels = D.get_feature("cadencelabels")
except Exception:
    raise ValueError("Corpus has no cadence annotations.")
cadence_labels
mc mn quarterbeats duration_qb mc_onset mn_onset timesig staff voice volta ... globalkey localkey globalkey_is_minor localkey_is_minor globalkey_mode localkey_mode localkey_resolved localkey_and_mode cadence_type cadence
corpus piece i
beethoven_piano_sonatas 01-1 7 9 8 30 2.00 1/4 1/4 2/2 2 1 <NA> ... f i True True minor minor i i, minor HC HC
16 17 16 61 3.00 0 0 2/2 2 1 <NA> ... f III True False minor major III III, minor HC HC
21 19 18 69 3.00 0 0 2/2 2 1 <NA> ... f III True False minor major III III, minor HC HC
26 21 20 77 3.00 0 0 2/2 2 1 <NA> ... f III True False minor major III III, minor HC HC
62 42 41 161 2.00 0 0 2/2 2 1 <NA> ... f III True False minor major III III, minor PAC PAC
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
32-2 770 169 155 647/2 2.25 0 0 9/16 2 1 <NA> ... C I False False major major I I, major HC HC
784 173 159 1337/4 4.25 7/16 7/16 9/16 2 1 <NA> ... C I False False major major I I, major HC HC
820 185 171 361 0.75 3/8 3/8 9/16 2 1 <NA> ... C I False False major major I I, major HC HC
866 189 175 737/2 1.50 0 0 9/16 2 1 <NA> ... C I False False major major I I, major PAC PAC
868 190 176 372 3.25 5/16 5/16 9/16 2 1 <NA> ... C I False False major major I I, major PAC PAC

1333 rows × 22 columns

cadence_labels.plot_grouped(
    title="Distribution of cadence types over the DLC",
    output=make_output_path("all_cadences_pie"),
    width=1000,
    height=1000,
)

Metadata#

cadence_filter = filters.HasCadenceAnnotationsFilter()
filtered_D = cadence_filter.process(D)
hascadence_metadata = filtered_D.get_metadata()
chronological_corpus_names = hascadence_metadata.get_corpus_names()
cadence_counts = cadence_labels.apply_step("Counter")
cadence_counts.plot_grouped("corpus")
mean_composition_years = (
    hascadence_metadata.groupby(level=0).composed_end.mean().astype(int).sort_values()
)
chronological_corpus_names = hascadence_metadata.get_corpus_names()
bar_data = pd.concat(
    [
        mean_composition_years.rename("year"),
        hascadence_metadata.groupby(level="corpus").size().rename("pieces"),
    ],
    axis=1,
).reset_index()
fig = px.bar(
    bar_data,
    x="year",
    y="pieces",
    color="corpus",
    title="Pieces contained in the dataset",
)
fig.update_traces(width=5)

Overall#

  • PAC: Perfect Authentic Cadence

  • IAC: Imperfect Authentic Cadence

  • HC: Half Cadence

  • DC: Deceptive Cadence

  • EC: Evaded Cadence

  • PC: Plagal Cadence

print(f"{len(cadence_labels)} cadence labels.")
utils.value_count_df(cadence_labels.cadence)
1333 cadence labels.
counts %
cadence
PAC 603 45.24
HC 406 30.46
IAC 275 20.63
EC 31 2.33
DC 15 1.13
PC 3 0.23

Per dataset#

all_labels = D.get_feature("harmonylabels")
cadence_count_per_dataset = all_labels.groupby("corpus").cadence.value_counts()
cadence_fraction_per_dataset = (
    cadence_count_per_dataset / cadence_count_per_dataset.groupby(level=0).sum()
)
cadence_fraction_per_dataset = cadence_fraction_per_dataset.rename(
    "fraction"
).reset_index()
cadence_fraction_per_dataset["corpus_name"] = cadence_fraction_per_dataset.corpus.map(
    utils.get_corpus_display_name
)
fig = px.bar(
    cadence_fraction_per_dataset,
    x="corpus_name",
    y="fraction",
    title="Distribution of cadence types per corpus",
    color="cadence",
    color_discrete_map=plotting.CADENCE_COLORS,
    labels=dict(corpus_name="", fraction="Fraction of all cadences"),
    category_orders=dict(corpus_name=chronological_corpus_names),
)
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_cadences_corpuswise_stacked_bars", height=1000)
fig.show()
fig = px.pie(
    cadence_count_per_dataset.rename("count").reset_index(),
    names="cadence",
    color="cadence",
    values="count",
    facet_col="corpus",
    facet_col_wrap=4,
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_cadences_corpuswise_pies")
fig.show()
cadence_count_per_mode = (
    all_labels.groupby("localkey_is_minor").cadence.value_counts().reset_index()
)
cadence_count_per_mode["mode"] = cadence_count_per_mode.localkey_is_minor.map(
    {False: "major", True: "minor"}
)
fig = px.pie(
    cadence_count_per_mode,
    names="cadence",
    color="cadence",
    values="count",
    facet_col="mode",
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_cadences_modewise_pies")
fig.show()
corelli = dc.Dataset()
CORELLI_PATH = os.path.abspath(os.path.join("..", "corelli"))
corelli.load(directory=CORELLI_PATH, parse_tsv=False)
annotated_view = corelli.data.get_view("annotated")
annotated_view.include("facets", "expanded")
annotated_view.pieces_with_incomplete_facets = False
corelli.data.set_view(annotated_view)
corelli.data.parse_tsv(choose="auto")
corelli.get_indices()
corelli_labels = corelli.get_facet("expanded")
corelli_cadence_count_per_mode = (
    corelli_labels.groupby("localkey_is_minor").cadence.value_counts().reset_index()
)
corelli_cadence_count_per_mode["mode"] = (
    corelli_cadence_count_per_mode.localkey_is_minor.map(
        {False: "major", True: "minor"}
    )
)
fig = px.pie(
    corelli_cadence_count_per_mode,
    names="cadence",
    color="cadence",
    values="count",
    facet_col="mode",
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "all_corelli_cadences_modewise_pies")
fig.show()
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[14], line 3
      1 corelli = dc.Dataset()
      2 CORELLI_PATH = os.path.abspath(os.path.join("..", "corelli"))
----> 3 corelli.load(directory=CORELLI_PATH, parse_tsv=False)
      4 annotated_view = corelli.data.get_view("annotated")
      5 annotated_view.include("facets", "expanded")

TypeError: Dataset.load() got an unexpected keyword argument 'directory'
combined_cadences = pd.concat(
    [cadence_count_per_mode, corelli_cadence_count_per_mode],
    keys=["couperin", "corelli"],
    names=["corpus", None],
).reset_index(level=0)
fig = px.pie(
    combined_cadences,
    names="cadence",
    color="cadence",
    values="count",
    facet_col="mode",
    facet_row="corpus",
    height=2000,
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
updated_layout = dict(utils.STD_LAYOUT, font=dict(size=40))
fig.update_layout(**updated_layout)
save_figure_as(fig, "couperin_corelli_cadences_modewise_pies")
fig.show()

Per phrase#

Number of cadences per phrase#

grouped_by_corpus = groupers.CorpusGrouper().process(D)
segmented = slicers.PhraseSlicer().process_data(grouped_by_corpus)
phrases = segmented.get_slice_info()
phrase_segments = segmented.get_facet("expanded")
phrase_gpb = phrase_segments.groupby(level=[0, 1, 2])
local_keys_per_phrase = phrase_gpb.localkey.unique().map(tuple)
n_local_keys_per_phrase = local_keys_per_phrase.map(len)
phrases_with_keys = pd.concat(
    [
        n_local_keys_per_phrase.rename("n_local_keys"),
        local_keys_per_phrase.rename("local_keys"),
        phrases,
    ],
    axis=1,
)
phrases_with_cadences = pd.concat(
    [
        phrase_gpb.cadence.nunique().rename("n_cadences"),
        phrase_gpb.cadence.unique()
        .rename("cadences")
        .map(lambda arr: tuple(e for e in arr if not pd.isnull(e))),
        phrases_with_keys,
    ],
    axis=1,
)
utils.value_count_df(phrases_with_cadences.n_cadences, counts_column="#phrases")
n_cad = (
    phrases_with_cadences.groupby(level="corpus")
    .n_cadences.value_counts()
    .rename("counts")
    .reset_index()
    .sort_values("n_cadences")
)
n_cad.n_cadences = n_cad.n_cadences.astype(str)
fig = px.bar(
    n_cad,
    x="corpus",
    y="counts",
    color="n_cadences",
    height=800,
    barmode="group",
    labels=dict(n_cadences="#cadences in a phrase"),
    category_orders=dict(dataset=chronological_corpus_names),
)
save_figure_as(fig, "n_cadences_per_phrase_corpuswise_absolute_grouped_bars")
fig.show()

Combinations of cadence types for phrases with more than one cadence#

utils.value_count_df(
    phrases_with_cadences[phrases_with_cadences.n_cadences > 1].cadences
)

Positioning of cadences within phrases#

df_rows = []
y_position = 0
for ix in (
    phrases_with_cadences[phrases_with_cadences.n_cadences > 0]
    .sort_values("duration_qb")
    .index
):
    df = phrase_segments.loc[ix]
    description = str(ix)
    if df.cadence.notna().any():
        interval = ix[2]
        df_rows.append((y_position, interval.length, "end of phrase", description))
        start_pos = interval.left
        cadences = df.loc[df.cadence.notna(), ["quarterbeats", "cadence"]]
        cadences.quarterbeats -= start_pos
        for cadence_x, cadence_type in cadences.itertuples(index=False, name=None):
            df_rows.append((y_position, cadence_x, cadence_type, description))
        y_position += 1
    # else:
    #    df_rows.append((y_position, pd.NA, pd.NA, description))

data = pd.DataFrame(df_rows, columns=["phrase_ix", "x", "marker", "description"])
fig = px.scatter(
    data[data.x.notna()],
    x="x",
    y="phrase_ix",
    color="marker",
    hover_name="description",
    height=3000,
    labels=dict(marker="legend"),
    color_discrete_map=plotting.CADENCE_COLORS,
)
fig.update_traces(marker_size=5)
fig.update_yaxes(autorange="reversed")
save_figure_as(fig, "cadence_positions_within_all_phrases")
fig.show()

Cadence ultima#

phrase_segments = segmented.get_facet("expanded")
cadence_selector = phrase_segments.cadence.notna()
missing_chord_selector = phrase_segments.chord.isna()
cadence_with_missing_chord_selector = cadence_selector & missing_chord_selector
missing = phrase_segments[cadence_with_missing_chord_selector]
expanded = ms3.expand_dcml.expand_labels(
    phrase_segments[cadence_with_missing_chord_selector],
    propagate=False,
    chord_tones=True,
    skip_checks=True,
)
phrase_segments.loc[cadence_with_missing_chord_selector] = expanded
print(
    f"Ultima harmony missing for {(phrase_segments.cadence.notna() & phrase_segments.bass_note.isna()).sum()} cadence "
    f"labels."
)

Ultimae as Roman numeral#

def highlight(row, color="#ffffb3"):
    if row.counts < 10:
        return [None, None, None, None]
    else:
        return ["background-color: {color};"] * 4


cadence_counts = all_labels.cadence.value_counts()
ultima_root = (
    phrase_segments.groupby(["localkey_is_minor", "cadence"])
    .numeral.value_counts()
    .rename("counts")
    .to_frame()
    .reset_index()
)
ultima_root.localkey_is_minor = ultima_root.localkey_is_minor.map(
    {False: "in major", True: "in minor"}
)
# ultima_root.style.apply(highlight, axis=1)
fig = px.pie(
    ultima_root,
    names="numeral",
    values="counts",
    facet_row="cadence",
    facet_col="localkey_is_minor",
    height=1500,
    category_orders={"cadence": cadence_counts.index},
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition="inside", textinfo="percent+label")
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "ultima_root_distributions_over_cadence_types_maj_min_pies")
fig.show()
# phrase_segments.groupby(level=[0,1,2], group_keys=False).apply(lambda df: df if ((df.cadence == 'PAC') &
# (df.numeral == 'V')).any() else None)

Ultimae bass note as scale degree#

ultima_bass = (
    phrase_segments.groupby(["localkey_is_minor", "cadence"])
    .bass_note.value_counts()
    .rename("counts")
    .reset_index()
)
ultima_bass.bass_note = ms3.transform(
    ultima_bass, ms3.fifths2sd, dict(fifths="bass_note", minor="localkey_is_minor")
)
ultima_bass.localkey_is_minor = ultima_bass.localkey_is_minor.map(
    {False: "in major", True: "in minor"}
)
# ultima_bass.style.apply(highlight, axis=1)
fig = px.pie(
    ultima_bass,
    names="bass_note",
    values="counts",
    facet_row="cadence",
    facet_col="localkey_is_minor",
    height=1500,
    category_orders={"cadence": cadence_counts.index},
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_traces(textposition="inside", textinfo="percent+label")
fig.update_layout(**utils.STD_LAYOUT)
save_figure_as(fig, "ultima_degree_distributions_over_cadence_types_maj_min_pies")
fig.show()

Chord progressions#

PACs with ultima I/i#

def remove_immediate_duplicates(lst):
    return tuple(a for a, b in zip(lst, (None,) + lst) if a != b)


def get_progressions(
    selected="PAC",
    last_row={},
    feature="chord",
    dataset=None,
    as_series=True,
    remove_duplicates=False,
):
    """Uses the nonlocal variable phrase_segments."""
    last_row = {k: v if isinstance(v, tuple) else (v,) for k, v in last_row.items()}
    progressions = []

    for (corp, fname, *_), df in phrase_segments[
        phrase_segments[feature].notna()
    ].groupby(level=[0, 1, 2]):
        if dataset is not None and dataset not in corp:
            continue
        if (df.cadence == selected).fillna(False).any():
            # remove chords after the last cadence label
            df = df[df.cadence.bfill().notna()]
            # group segments leading up to a cadence label
            cadence_groups = df.cadence.notna().shift().fillna(False).cumsum()
            for i, cadence in df.groupby(cadence_groups):
                last_r = cadence.iloc[-1]
                typ = last_r.cadence
                if typ != selected:
                    continue
                if any(last_r[feat] not in values for feat, values in last_row.items()):
                    continue
                if remove_duplicates:
                    progressions.append(
                        remove_immediate_duplicates(cadence[feature].to_list())
                    )
                else:
                    progressions.append(tuple(cadence[feature]))
    if as_series:
        return pd.Series(progressions, dtype="object")
    return progressions
chord_progressions = get_progressions("PAC", dict(numeral=("I", "i")), "chord")
print(f"Progressions for {len(chord_progressions)} cadences:")
utils.value_count_df(chord_progressions, "chord progressions")
numeral_progressions = get_progressions("PAC", dict(numeral=("I", "i")), "numeral")
utils.value_count_df(numeral_progressions, "numeral progressions")
numeral_prog_no_dups = numeral_progressions.map(remove_immediate_duplicates)
utils.value_count_df(numeral_prog_no_dups)

PACs ending on scale degree 1#

Scale degrees expressed w.r.t. major scale, regardless of actual key.

bass_progressions = get_progressions("PAC", dict(bass_note=0), "bass_note")
bass_prog = bass_progressions.map(ms3.fifths2sd)
print(f"Progressions for {len(bass_progressions)} cadences:")
utils.value_count_df(bass_prog, "bass progressions")
bass_prog_no_dups = bass_prog.map(remove_immediate_duplicates)
utils.value_count_df(bass_prog_no_dups)
def progressions2graph_data(progressions, cut_at_stage=None):
    stage_nodes = defaultdict(dict)
    edge_weights = Counter()
    node_counter = 0
    for progression in progressions:
        previous_node = None
        for stage, current in enumerate(reversed(progression)):
            if cut_at_stage and stage > cut_at_stage:
                break
            if current in stage_nodes[stage]:
                current_node = stage_nodes[stage][current]
            else:
                stage_nodes[stage][current] = node_counter
                current_node = node_counter
                node_counter += 1
            if previous_node is not None:
                edge_weights.update([(current_node, previous_node)])
            previous_node = current_node
    return stage_nodes, edge_weights


def plot_progressions(progressions, cut_at_stage=None, **kwargs):
    stage_nodes, edge_weights = progressions2graph_data(
        progressions, cut_at_stage=cut_at_stage
    )
    return utils.graph_data2sankey(stage_nodes, edge_weights, **kwargs)

Chordal roots for the 3 last stages#

fig = plot_progressions(
    numeral_prog_no_dups,
    cut_at_stage=3,
    font=dict(size=30),
)
save_figure_as(fig, "last_3_roots_before_pacs_ending_on_1_sankey", height=800)
fig.show()

Complete chords for the last four stages in major#

pac_major = get_progressions("PAC", dict(numeral="I", localkey_is_minor=False), "chord")
fig = plot_progressions(pac_major, cut_at_stage=4)
save_figure_as(fig, "last_4_stages_before_pacs_in_major_sankey")
fig.show()

Bass degrees for the last 6 stages.#

fig = plot_progressions(bass_prog_no_dups, cut_at_stage=7)
save_figure_as(fig, "last_7_degrees_before_pacs_ending_on_1_sankey")
fig.show()

Bass degrees without accidentals#

def remove_sd_accidentals(t):
    return tuple(map(lambda sd: sd[-1], t))


bass_prog_no_acc_no_dup = bass_prog.map(remove_sd_accidentals).map(
    remove_immediate_duplicates
)
fig = plot_progressions(bass_prog_no_acc_no_dup, cut_at_stage=7)
save_figure_as(fig, "last_7_degrees_before_pacs_ending_on_1_without_accdentals_sankey")
fig.show()

HCs ending on V#

half = get_progressions("HC", dict(numeral="V"), "bass_note").map(ms3.fifths2sd)
print(f"Progressions for {len(half)} cadences:")
fig = plot_progressions(half.map(remove_immediate_duplicates), cut_at_stage=5)
save_figure_as(fig, "last_7_degrees_before_hcs_ending_on_V_sankey")
fig.show()