Overview#

This notebook gives a general overview of the features included in the dataset.

Hide imports
%load_ext autoreload
%autoreload 2
import os

import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display

import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

D = utils.get_dataset("ABC", corpus_release="v2.6")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("The Annotated Beethoven Corpus (ABC) version v2.6")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
---------------------------------------------------------------------------
PackageInconsistentlySerializedError      Traceback (most recent call last)
Cell In[3], line 1
----> 1 D = utils.get_dataset("ABC", corpus_release="v2.6")
      2 package = D.inputs.get_package()
      3 package_info = package._package.custom

File ~/work/workflow_deployment/ABC/tmp_corpus_docs/notebooks/utils.py:3619, in get_dataset(corpus_name, target_dir, corpus_release)
   3617 download_if_missing(zip_name, zip_path)
   3618 download_if_missing(json_name, json_path)
-> 3619 return dc.Dataset.from_package(json_path)

File ~/.local/lib/python3.12/site-packages/dimcat/data/datasets/base.py:107, in Dataset.from_package(cls, package)
    105 """Instantiate from a PackageSpecs by loading it into the inputs catalog."""
    106 dataset = cls()
--> 107 dataset.load_package(package=package)
    108 return dataset

File ~/.local/lib/python3.12/site-packages/dimcat/data/datasets/base.py:429, in Dataset.load_package(self, package, package_name, **options)
    416 """Loads a package into the inputs catalog.
    417 
    418 Args:
   (...)    426 
    427 """
    428 if isinstance(package, (str, Path)):
--> 429     package = DimcatPackage.from_descriptor_path(package, **options)
    430 elif isinstance(package, dict):
    431     package = DimcatPackage.from_descriptor(package, **options)

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:301, in Package.from_descriptor_path(cls, descriptor_path, basepath, auto_validate)
    297     basepath, descriptor_filename = reconcile_base_and_file(
    298         basepath, descriptor_path
    299     )
    300 fl_package = fl.Package.from_descriptor(descriptor_path)
--> 301 return cls.from_descriptor(
    302     fl_package,
    303     descriptor_filename=descriptor_filename,
    304     auto_validate=auto_validate,
    305     basepath=basepath,
    306 )

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:268, in Package.from_descriptor(cls, descriptor, descriptor_filename, auto_validate, basepath)
    258     ResourceConstructor = Resource
    259 resources = [
    260     ResourceConstructor.from_descriptor(
    261         descriptor=resource,
   (...)    266     for resource in fl_package.resources
    267 ]
--> 268 return Constructor(
    269     package_name=package_name,
    270     resources=resources,
    271     descriptor_filename=descriptor_filename,
    272     basepath=basepath,
    273     auto_validate=auto_validate,
    274     metadata=fl_package.custom,
    275 )

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/dc.py:60, in DimcatPackage.__init__(self, package_name, resources, basepath, descriptor_filename, auto_validate, metadata)
     31 def __init__(
     32     self,
     33     package_name: str,
   (...)     38     metadata: Optional[dict] = None,
     39 ) -> None:
     40     """
     41 
     42     Args:
   (...)     58             Custom metadata to be maintained in the package descriptor.
     59     """
---> 60     super().__init__(
     61         package_name=package_name,
     62         resources=resources,
     63         basepath=basepath,
     64         descriptor_filename=descriptor_filename,
     65         auto_validate=auto_validate,
     66         metadata=metadata,
     67     )

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:593, in Package.__init__(self, package_name, resources, basepath, descriptor_filename, auto_validate, metadata)
    590     self.descriptor_filename = descriptor_filename
    592 if resources is not None:
--> 593     self.extend(resources)
    595 if auto_validate:
    596     self.validate(raise_exception=True)

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:1017, in Package.extend(self, resources)
   1015     return
   1016 for n_added, resource in enumerate(resources, 1):
-> 1017     self._add_resource(
   1018         resource,
   1019     )
   1020 self.logger.info(
   1021     f"Package {self.package_name!r} was extended with {n_added} resources to a total "
   1022     f"of {self.n_resources}."
   1023 )
   1024 status_after = self.status

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:938, in Package._add_resource(self, resource, mode)
    936 self._resources.append(resource)
    937 self._package.add_resource(resource.resource)
--> 938 self._update_status()
    939 return resource

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:1508, in Package._update_status(self)
   1507 def _update_status(self):
-> 1508     self._status = self._get_status()

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:1215, in Package._get_status(self)
   1213 if not self.is_aligned:
   1214     return PackageStatus.MISALIGNED
-> 1215 if not self.is_partially_serialized:
   1216     return PackageStatus.ALIGNED
   1217 if self.is_fully_serialized:

File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:750, in Package.is_partially_serialized(self)
    748 else:
    749     existing, missing = self.normpath, self.get_descriptor_path()
--> 750 raise PackageInconsistentlySerializedError(self.package_name, existing, missing)

PackageInconsistentlySerializedError: The package 'abc' has been serialized in an inconsistent way, expected ZIP and descriptor, found only '/home/runner/work/workflow_deployment/ABC/tmp_corpus_docs/notebooks/ABC.datapackage.json' but not {'basepath': ~/work/workflow_deployment/ABC/tmp_corpus_docs/notebooks, 'filepath': 'abc.zip'}.
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years

Composition dates#

This section relies on the dataset’s metadata.

valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
    f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
    f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)

Mean composition years per corpus#

def make_summary(metadata_df):
    piece_is_annotated = metadata_df.label_count > 0
    return metadata_df[piece_is_annotated].copy()
Hide source
summary = make_summary(all_metadata)
bar_data = pd.concat(
    [
        mean_composition_years.rename("year"),
        summary.groupby(level="corpus").size().rename("pieces"),
    ],
    axis=1,
).reset_index()

N = len(summary)
fig = px.bar(
    bar_data,
    x="year",
    y="pieces",
    color="corpus",
    color_discrete_map=corpus_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary

Composition years histogram#

Hide source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
    hist_data,
    x="composed_end",
    color="corpus",
    labels=dict(
        composed_end="decade",
        count="pieces",
    ),
    color_discrete_map=corpus_name_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()

Dimensions#

Overview#

def make_overview_table(groupby, group_name="pieces"):
    n_groups = groupby.size().rename(group_name)
    absolute_numbers = dict(
        measures=groupby.last_mn.sum(),
        length=groupby.length_qb.sum(),
        notes=groupby.n_onsets.sum(),
        labels=groupby.label_count.sum(),
    )
    absolute = pd.DataFrame.from_dict(absolute_numbers)
    absolute = pd.concat([n_groups, absolute], axis=1)
    sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
    absolute = pd.concat([absolute, sum_row])
    return absolute


absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
def summarize_dataset(D):
    all_metadata = D.get_metadata()
    summary = make_summary(all_metadata)
    return make_overview_table(summary.groupby(level=0))


corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())

Measures#

all_measures = D.get_feature("measures")
print(
    f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
all_measures.get_default_analysis().plot_grouped()

Harmony labels#

All symbols, independent of the local key (the mode of which changes their semantics).

try:
    all_annotations = D.get_feature("harmonylabels").df
except Exception:
    all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
    display(all_annotations.head())
    print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
    no_chord = all_annotations.root.isna()
    if no_chord.sum() > 0:
        print(
            f"{no_chord.sum()} of them are not chords. Their values are:"
            f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
        )
    all_chords = all_annotations[~no_chord].copy()
    print(
        f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
        f"{len(all_chords.groupby(level=[0,1]))} documents."
    )
    all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
    all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
else:
    print("Dataset contains no annotations.")