Overview#
This notebook gives a general overview of the features included in the dataset.
Show imports
%load_ext autoreload
%autoreload 2
import os
import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display
import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)
def make_output_path(
filename: str,
extension=None,
path=RESULTS_PATH,
) -> str:
return utils.make_output_path(filename=filename, extension=extension, path=path)
def save_figure_as(
fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
if formats is not None:
for fmt in formats:
plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
else:
plotting.write_image(fig, filename, directory, **kwargs)
Loading data
D = utils.get_dataset("ABC", corpus_release="v2.6")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("The Annotated Beethoven Corpus (ABC) version v2.6")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
---------------------------------------------------------------------------
PackageInconsistentlySerializedError Traceback (most recent call last)
Cell In[3], line 1
----> 1 D = utils.get_dataset("ABC", corpus_release="v2.6")
2 package = D.inputs.get_package()
3 package_info = package._package.custom
File ~/work/workflow_deployment/ABC/tmp_corpus_docs/notebooks/utils.py:3619, in get_dataset(corpus_name, target_dir, corpus_release)
3617 download_if_missing(zip_name, zip_path)
3618 download_if_missing(json_name, json_path)
-> 3619 return dc.Dataset.from_package(json_path)
File ~/.local/lib/python3.12/site-packages/dimcat/data/datasets/base.py:107, in Dataset.from_package(cls, package)
105 """Instantiate from a PackageSpecs by loading it into the inputs catalog."""
106 dataset = cls()
--> 107 dataset.load_package(package=package)
108 return dataset
File ~/.local/lib/python3.12/site-packages/dimcat/data/datasets/base.py:429, in Dataset.load_package(self, package, package_name, **options)
416 """Loads a package into the inputs catalog.
417
418 Args:
(...) 426
427 """
428 if isinstance(package, (str, Path)):
--> 429 package = DimcatPackage.from_descriptor_path(package, **options)
430 elif isinstance(package, dict):
431 package = DimcatPackage.from_descriptor(package, **options)
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:301, in Package.from_descriptor_path(cls, descriptor_path, basepath, auto_validate)
297 basepath, descriptor_filename = reconcile_base_and_file(
298 basepath, descriptor_path
299 )
300 fl_package = fl.Package.from_descriptor(descriptor_path)
--> 301 return cls.from_descriptor(
302 fl_package,
303 descriptor_filename=descriptor_filename,
304 auto_validate=auto_validate,
305 basepath=basepath,
306 )
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:268, in Package.from_descriptor(cls, descriptor, descriptor_filename, auto_validate, basepath)
258 ResourceConstructor = Resource
259 resources = [
260 ResourceConstructor.from_descriptor(
261 descriptor=resource,
(...) 266 for resource in fl_package.resources
267 ]
--> 268 return Constructor(
269 package_name=package_name,
270 resources=resources,
271 descriptor_filename=descriptor_filename,
272 basepath=basepath,
273 auto_validate=auto_validate,
274 metadata=fl_package.custom,
275 )
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/dc.py:60, in DimcatPackage.__init__(self, package_name, resources, basepath, descriptor_filename, auto_validate, metadata)
31 def __init__(
32 self,
33 package_name: str,
(...) 38 metadata: Optional[dict] = None,
39 ) -> None:
40 """
41
42 Args:
(...) 58 Custom metadata to be maintained in the package descriptor.
59 """
---> 60 super().__init__(
61 package_name=package_name,
62 resources=resources,
63 basepath=basepath,
64 descriptor_filename=descriptor_filename,
65 auto_validate=auto_validate,
66 metadata=metadata,
67 )
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:593, in Package.__init__(self, package_name, resources, basepath, descriptor_filename, auto_validate, metadata)
590 self.descriptor_filename = descriptor_filename
592 if resources is not None:
--> 593 self.extend(resources)
595 if auto_validate:
596 self.validate(raise_exception=True)
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:1017, in Package.extend(self, resources)
1015 return
1016 for n_added, resource in enumerate(resources, 1):
-> 1017 self._add_resource(
1018 resource,
1019 )
1020 self.logger.info(
1021 f"Package {self.package_name!r} was extended with {n_added} resources to a total "
1022 f"of {self.n_resources}."
1023 )
1024 status_after = self.status
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:938, in Package._add_resource(self, resource, mode)
936 self._resources.append(resource)
937 self._package.add_resource(resource.resource)
--> 938 self._update_status()
939 return resource
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:1508, in Package._update_status(self)
1507 def _update_status(self):
-> 1508 self._status = self._get_status()
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:1215, in Package._get_status(self)
1213 if not self.is_aligned:
1214 return PackageStatus.MISALIGNED
-> 1215 if not self.is_partially_serialized:
1216 return PackageStatus.ALIGNED
1217 if self.is_fully_serialized:
File ~/.local/lib/python3.12/site-packages/dimcat/data/packages/base.py:750, in Package.is_partially_serialized(self)
748 else:
749 existing, missing = self.normpath, self.get_descriptor_path()
--> 750 raise PackageInconsistentlySerializedError(self.package_name, existing, missing)
PackageInconsistentlySerializedError: The package 'abc' has been serialized in an inconsistent way, expected ZIP and descriptor, found only '/home/runner/work/workflow_deployment/ABC/tmp_corpus_docs/notebooks/ABC.datapackage.json' but not {'basepath': ~/work/workflow_deployment/ABC/tmp_corpus_docs/notebooks, 'filepath': 'abc.zip'}.
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years
Composition dates#
This section relies on the dataset’s metadata.
valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)
Mean composition years per corpus#
def make_summary(metadata_df):
piece_is_annotated = metadata_df.label_count > 0
return metadata_df[piece_is_annotated].copy()
Show source
summary = make_summary(all_metadata)
bar_data = pd.concat(
[
mean_composition_years.rename("year"),
summary.groupby(level="corpus").size().rename("pieces"),
],
axis=1,
).reset_index()
N = len(summary)
fig = px.bar(
bar_data,
x="year",
y="pieces",
color="corpus",
color_discrete_map=corpus_colors,
title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary
Composition years histogram#
Show source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
hist_data,
x="composed_end",
color="corpus",
labels=dict(
composed_end="decade",
count="pieces",
),
color_discrete_map=corpus_name_colors,
title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()
Dimensions#
Overview#
def make_overview_table(groupby, group_name="pieces"):
n_groups = groupby.size().rename(group_name)
absolute_numbers = dict(
measures=groupby.last_mn.sum(),
length=groupby.length_qb.sum(),
notes=groupby.n_onsets.sum(),
labels=groupby.label_count.sum(),
)
absolute = pd.DataFrame.from_dict(absolute_numbers)
absolute = pd.concat([n_groups, absolute], axis=1)
sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
absolute = pd.concat([absolute, sum_row])
return absolute
absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
def summarize_dataset(D):
all_metadata = D.get_metadata()
summary = make_summary(all_metadata)
return make_overview_table(summary.groupby(level=0))
corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())
Measures#
all_measures = D.get_feature("measures")
print(
f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
all_measures.get_default_analysis().plot_grouped()
Harmony labels#
All symbols, independent of the local key (the mode of which changes their semantics).
try:
all_annotations = D.get_feature("harmonylabels").df
except Exception:
all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
display(all_annotations.head())
print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
no_chord = all_annotations.root.isna()
if no_chord.sum() > 0:
print(
f"{no_chord.sum()} of them are not chords. Their values are:"
f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
)
all_chords = all_annotations[~no_chord].copy()
print(
f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
f"{len(all_chords.groupby(level=[0,1]))} documents."
)
all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
utils.get_corpus_display_name
)
all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
utils.get_corpus_display_name
)
else:
print("Dataset contains no annotations.")