Notes#

Hide imports
import os

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting

import utils

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 500)
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "notes_stats"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("wf_bach_sonatas", corpus_release="v2.3")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Wilhelm Friedemann Bach – Piano Sonatas version v2.3")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Wilhelm Friedemann Bach – Piano Sonatas version v2.3
Datapackage 'wf_bach_sonatas' @ v2.3
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'wf_bach_sonatas': ["'wf_bach_sonatas.measures' (MuseScoreFacetName.MuseScoreMeasures)",
                                             "'wf_bach_sonatas.notes' (MuseScoreFacetName.MuseScoreNotes)",
                                             "'wf_bach_sonatas.expanded' (MuseScoreFacetName.MuseScoreHarmonies)",
                                             "'wf_bach_sonatas.chords' (MuseScoreFacetName.MuseScoreChords)",
                                             "'wf_bach_sonatas.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}

Metadata#

filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)

all_metadata = filtered_D.get_metadata()
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:, :20]
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count annotated_key harmony_version annotators reviewers
corpus
wf_bach_sonatas F001_n08a {1: '4/4'} {1: 0} 63 63 252.0 126 126 504.0 () 602.75 1186 727 0 0 204 C 2.3.0 Christos Giannopoulos (1.0.0), Davor Krkljus (... DK, AN
chronological_order = utils.chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
notes_feature = filtered_D.get_feature("notes")
all_notes = notes_feature.df
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
8925 notes over 9 files.
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice volta chord_id gracenote midi name nominal_duration octave scalar tied tpc_name tpc
corpus piece i
wf_bach_sonatas F001_n08a 0 1 1 0 0 1.00 1/4 0 0 4/4 2 1 <NA> 15 <NA> 36 C2 1/4 2 1 <NA> C 0
1 1 1 0 0 1.00 1/4 0 0 4/4 2 1 <NA> 15 <NA> 40 E2 1/4 2 1 <NA> E 4
2 1 1 0 0 1.00 1/4 0 0 4/4 2 1 <NA> 15 <NA> 43 G2 1/4 2 1 <NA> G 1
3 1 1 0 0 1.00 1/4 0 0 4/4 2 1 <NA> 15 <NA> 48 C3 1/4 3 1 <NA> C 0
4 1 1 1/4 1/4 0.25 1/16 1/16 1/16 4/4 1 1 <NA> 0 <NA> 72 C5 1/16 5 1 <NA> C 0
def weight_notes(nl, group_col="midi", precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration  # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)


def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch] * count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
all_notes["corpus_name"] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby("corpus_name")
weighted_midi = pd.concat(
    [weight_notes(nl, "midi", precise=False) for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_midi.columns = ["dataset", "midi"]
weighted_midi
dataset midi
0 WF Bach Sonatas 31
1 WF Bach Sonatas 33
2 WF Bach Sonatas 33
3 WF Bach Sonatas 35
4 WF Bach Sonatas 36
... ... ...
4433 WF Bach Sonatas 87
4434 WF Bach Sonatas 88
4435 WF Bach Sonatas 88
4436 WF Bach Sonatas 89
4437 WF Bach Sonatas 89

4438 rows × 2 columns

# fig = px.violin(weighted_midi,
#                 x='dataset',
#                 y='midi',
#                 color='dataset',
#                 title="Corpus-wise distribution over registers (ambitus)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     midi='distribution of pitches by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000, height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
#     ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "ambitus_corpuswise_violins")
# fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat(
    [weight_notes(nl, "tpc") for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_tpc.columns = ["dataset", "tpc"]
weighted_tpc
dataset tpc
0 WF Bach Sonatas -4
1 WF Bach Sonatas -4
2 WF Bach Sonatas -4
3 WF Bach Sonatas -4
4 WF Bach Sonatas -4
... ... ...
13307 WF Bach Sonatas 12
13308 WF Bach Sonatas 12
13309 WF Bach Sonatas 12
13310 WF Bach Sonatas 12
13311 WF Bach Sonatas 13

13312 rows × 2 columns

As violin plot#

# fig = px.violin(weighted_tpc,
#                 x='dataset',
#                 y='tpc',
#                 color='dataset',
#                 title="Corpus-wise distribution over line of fifths (tonal pitch classes)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     tpc='distribution of tonal pitch classes by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000,
#                 height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
#     ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
#     zerolinecolor='grey',
#     zeroline=True
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "pitch_class_distributions_corpuswise_violins")
# fig.show()
(all_notes)
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice volta chord_id gracenote midi name nominal_duration octave scalar tied tpc_name tpc corpus_name
corpus piece i
wf_bach_sonatas F001_n08a 0 1 1 0 0 1.000000 1/4 0 0 4/4 2 1 <NA> 15 <NA> 36 C2 1/4 2 1 <NA> C 0 WF Bach Sonatas
1 1 1 0 0 1.000000 1/4 0 0 4/4 2 1 <NA> 15 <NA> 40 E2 1/4 2 1 <NA> E 4 WF Bach Sonatas
2 1 1 0 0 1.000000 1/4 0 0 4/4 2 1 <NA> 15 <NA> 43 G2 1/4 2 1 <NA> G 1 WF Bach Sonatas
3 1 1 0 0 1.000000 1/4 0 0 4/4 2 1 <NA> 15 <NA> 48 C3 1/4 3 1 <NA> C 0 WF Bach Sonatas
4 1 1 1/4 1/4 0.250000 1/16 1/16 1/16 4/4 1 1 <NA> 0 <NA> 72 C5 1/16 5 1 <NA> C 0 WF Bach Sonatas
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
F003_n04c 1672 110 108 1292/3 1292/3 0.333333 1/12 5/12 5/12 2/2 2 1 <NA> 1669 <NA> 57 A3 1/8 3 2/3 <NA> A 3 WF Bach Sonatas
1673 110 108 1292/3 1292/3 0.333333 1/12 5/12 5/12 2/2 1 1 <NA> 1662 <NA> 61 C#4 1/8 4 2/3 <NA> C# 7 WF Bach Sonatas
1674 110 108 431 431 1.000000 1/4 1/2 1/2 2/2 2 2 <NA> 1672 <NA> 50 D3 1/4 3 1 -1 D 2 WF Bach Sonatas
1675 110 108 431 431 1.000000 1/4 1/2 1/2 2/2 2 1 <NA> 1670 <NA> 54 F#3 1/4 3 1 <NA> F# 6 WF Bach Sonatas
1676 110 108 431 431 1.000000 1/4 1/2 1/2 2/2 1 1 <NA> 1663 <NA> 62 D4 1/4 4 1 <NA> D 2 WF Bach Sonatas

8925 rows × 23 columns

width = 1400
height = 800

weighted_pitch_values = pd.concat(
    [
        weighted_midi.rename(columns={"midi": "value"}),
        weighted_tpc.rename(columns={"tpc": "value"}),
    ],
    keys=["MIDI pitch", "Tonal pitch class"],
    names=["distribution"],
).reset_index(level=[0, 1])

fig = plotting.make_violin_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Dark24,
    traces_settings=dict(
        spanmode="hard",
        width=1,
        # scalemode='width'
    ),
    layout=dict(
        showlegend=False,
        margin=dict(
            t=0,
            b=0,
            l=0,
            r=0,
        ),
    ),
    x_axis=dict(
        # tickangle=45,
        tickfont_size=15
    ),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=dict(title_text=""))
save_figure_as(fig, "notes_violin", width=width, height=height)
fig
fig = plotting.make_box_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    # box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Light24,
    # traces_settings=dict(spanmode='hard'),
    layout=dict(showlegend=False, margin=dict(t=0)),
    x_axis=dict(tickangle=45, tickfont_size=15),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=True)
save_figure_as(fig, "notes_box", width=width, height=height)
fig

As bar plots#

bar_data = all_notes.groupby("tpc").duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max() + 1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(
    bar_data,
    x="tpc",
    y="duration_qb",
    labels=dict(tpc="Named pitch class", duration_qb="Duration in quarter notes"),
    color_discrete_sequence=utils.CORPUS_COLOR_SCALE,
    width=1000,
    height=300,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_absolute_bars")
fig.show()
scatter_data = all_notes.groupby(["corpus_name", "tpc"]).duration_qb.sum().reset_index()
fig = px.bar(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    width=1000,
    height=500,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_corpuswise_absolute_bars")
fig.show()

As scatter plots#

fig = px.scatter(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    facet_col="corpus_name",
    facet_col_wrap=3,
    facet_col_spacing=0.03,
    width=1000,
    height=1000,
)
fig.update_traces(mode="lines+markers")
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT, showlegend=False)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=[-12, -6, 0, 6, 12, 18],
    ticktext=["Dbb", "Gb", "C", "F#", "B#", "E##"],
    visible=True,
)
fig.update_yaxes(zeroline=False, matches=None, showticklabels=True)
save_figure_as(fig, "pitch_class_distribution_corpuswise_scatter")
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1, 5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1, 5)].duration_qb.sum()
entire = no_accidental + with_accidental
(
    f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = "
    f"{no_accidental / entire}"
)
'Fraction of note duration without accidental of the entire durations: 3432.4583333333335 / 4437.708333333334 = 0.7734754236890287'

Notes and staves#

print("Distribution of notes over staves:")
utils.value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 5548 62.16
2 3377 37.84