Overview#

This notebook gives a general overview of the features included in the dataset.

Hide imports
%load_ext autoreload
%autoreload 2
import os

import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display

import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

D = utils.get_dataset("wagner_overtures", corpus_release="v2.6")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Richard Wagner – Overtures version v2.6")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Richard Wagner – Overtures version v2.6
Datapackage 'wagner_overtures' @ v2.6
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'wagner_overtures': ["'wagner_overtures.measures' (MuseScoreFacetName.MuseScoreMeasures)",
                                              "'wagner_overtures.notes' (MuseScoreFacetName.MuseScoreNotes)",
                                              "'wagner_overtures.expanded' (MuseScoreFacetName.MuseScoreHarmonies)",
                                              "'wagner_overtures.chords' (MuseScoreFacetName.MuseScoreChords)",
                                              "'wagner_overtures.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded all_notes_qb n_onsets ... originalFormat imslp wikidata musicbrainz viaf pdf staff_1_ambitus staff_1_instrument staff_2_ambitus staff_2_instrument
corpus piece
wagner_overtures WWV090_Tristan_01_Vorspiel-Prelude_Ricordi1888Floridia {1: '6/8'} {1: 0, 44: 3, 72: 0} 112 111 333.5 112 111 333.5 1224.50 1676 ... xml https://imslp.org/wiki/Tristan_und_Isolde,_WWV... https://www.wikidata.org/wiki/Q1324254 https://musicbrainz.org/work/52836ec3-2272-37c... https://viaf.org/viaf/180184935/ https://imslp.org/wiki/Special:ReverseLookup/2... 41-93 (F2-A6) Piano (2) 29-77 (F1-F5) Piano (2)
WWV096-Meistersinger_01_Vorspiel-Prelude_SchottKleinmichel {1: '4/4'} {1: 0, 97: 4, 109: 3, 118: 0, 122: -3, 151: 0} 222 222 888.0 222 222 888.0 3727.25 5380 ... xml https://imslp.org/wiki/Die_Meistersinger_von_N... https://www.wikidata.org/wiki/Q465540 https://musicbrainz.org/work/6b198406-4fbf-3d6... https://viaf.org/viaf/59819198 https://imslp.org/wiki/Special:ReverseLookup/5... 57-96 (A3-C7) Piano 26-81 (D1-A5) Piano

2 rows × 54 columns

mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years
corpus
wagner_overtures    1856.25
Name: mean_composition_year, dtype: float64

Composition dates#

This section relies on the dataset’s metadata.

valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
    f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
    f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)
Composition dates range from 1845 ('wagner_overtures', 'WWV096-Meistersinger_01_Vorspiel-Prelude_SchottKleinmichel') to 1867 ('wagner_overtures', 'WWV096-Meistersinger_01_Vorspiel-Prelude_SchottKleinmichel').

Mean composition years per corpus#

def make_summary(metadata_df):
    piece_is_annotated = metadata_df.label_count > 0
    return metadata_df[piece_is_annotated].copy()
Hide source
summary = make_summary(all_metadata)
bar_data = pd.concat(
    [
        mean_composition_years.rename("year"),
        summary.groupby(level="corpus").size().rename("pieces"),
    ],
    axis=1,
).reset_index()

N = len(summary)
fig = px.bar(
    bar_data,
    x="year",
    y="pieces",
    color="corpus",
    color_discrete_map=corpus_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary
TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded all_notes_qb n_onsets ... originalFormat imslp wikidata musicbrainz viaf pdf staff_1_ambitus staff_1_instrument staff_2_ambitus staff_2_instrument
corpus piece
wagner_overtures WWV090_Tristan_01_Vorspiel-Prelude_Ricordi1888Floridia {1: '6/8'} {1: 0, 44: 3, 72: 0} 112 111 333.5 112 111 333.5 1224.50 1676 ... xml https://imslp.org/wiki/Tristan_und_Isolde,_WWV... https://www.wikidata.org/wiki/Q1324254 https://musicbrainz.org/work/52836ec3-2272-37c... https://viaf.org/viaf/180184935/ https://imslp.org/wiki/Special:ReverseLookup/2... 41-93 (F2-A6) Piano (2) 29-77 (F1-F5) Piano (2)
WWV096-Meistersinger_01_Vorspiel-Prelude_SchottKleinmichel {1: '4/4'} {1: 0, 97: 4, 109: 3, 118: 0, 122: -3, 151: 0} 222 222 888.0 222 222 888.0 3727.25 5380 ... xml https://imslp.org/wiki/Die_Meistersinger_von_N... https://www.wikidata.org/wiki/Q465540 https://musicbrainz.org/work/6b198406-4fbf-3d6... https://viaf.org/viaf/59819198 https://imslp.org/wiki/Special:ReverseLookup/5... 57-96 (A3-C7) Piano 26-81 (D1-A5) Piano

2 rows × 54 columns

Composition years histogram#

Hide source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
    hist_data,
    x="composed_end",
    color="corpus",
    labels=dict(
        composed_end="decade",
        count="pieces",
    ),
    color_discrete_map=corpus_name_colors,
    title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()

Dimensions#

Overview#

def make_overview_table(groupby, group_name="pieces"):
    n_groups = groupby.size().rename(group_name)
    absolute_numbers = dict(
        measures=groupby.last_mn.sum(),
        length=groupby.length_qb.sum(),
        notes=groupby.n_onsets.sum(),
        labels=groupby.label_count.sum(),
    )
    absolute = pd.DataFrame.from_dict(absolute_numbers)
    absolute = pd.concat([n_groups, absolute], axis=1)
    sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
    absolute = pd.concat([absolute, sum_row])
    return absolute


absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
pieces measures length notes labels
Die Meistersinger von Nürnberg 1 222 888 5380 1074
Tristan und Isolde 1 111 333 1676 359
sum 2 333 1221 7056 1433
def summarize_dataset(D):
    all_metadata = D.get_metadata()
    summary = make_summary(all_metadata)
    return make_overview_table(summary.groupby(level=0))


corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())
|                  |   pieces |   measures |   length |   notes |   labels |
|:-----------------|---------:|-----------:|---------:|--------:|---------:|
| wagner_overtures |        2 |        333 |     1221 |    7056 |     1433 |
| sum              |        2 |        333 |     1221 |    7056 |     1433 |

Measures#

all_measures = D.get_feature("measures")
print(
    f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
334 measures over 2 files.
mc mn quarterbeats duration_qb keysig timesig act_dur mc_offset numbering_offset dont_count barline breaks repeats next
corpus piece i
wagner_overtures WWV090_Tristan_01_Vorspiel-Prelude_Ricordi1888Floridia 0 1 0 0 0.5 0 6/8 1/8 5/8 <NA> 1 <NA> <NA> firstMeasure (2,)
1 2 1 1/2 3.0 0 6/8 3/4 0 <NA> <NA> <NA> <NA> <NA> (3,)
2 3 2 7/2 3.0 0 6/8 3/4 0 <NA> <NA> <NA> <NA> <NA> (4,)
3 4 3 13/2 3.0 0 6/8 3/4 0 <NA> <NA> <NA> <NA> <NA> (5,)
4 5 4 19/2 3.0 0 6/8 3/4 0 <NA> <NA> <NA> <NA> <NA> (6,)
all_measures.get_default_analysis().plot_grouped()

Harmony labels#

All symbols, independent of the local key (the mode of which changes their semantics).

try:
    all_annotations = D.get_feature("harmonylabels").df
except Exception:
    all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
    display(all_annotations.head())
    print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
    no_chord = all_annotations.root.isna()
    if no_chord.sum() > 0:
        print(
            f"{no_chord.sum()} of them are not chords. Their values are:"
            f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
        )
    all_chords = all_annotations[~no_chord].copy()
    print(
        f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
        f"{len(all_chords.groupby(level=[0,1]))} documents."
    )
    all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
    all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
        utils.get_corpus_display_name
    )
else:
    print("Dataset contains no annotations.")
mc mn quarterbeats quarterbeats_all_endings duration_qb mc_onset mn_onset timesig staff voice ... numeral_or_applied_to_numeral intervals_over_bass intervals_over_root scale_degrees scale_degrees_and_mode scale_degrees_major scale_degrees_minor globalkey localkey chord
corpus piece i
wagner_overtures WWV090_Tristan_01_Vorspiel-Prelude_Ricordi1888Floridia 0 1 0 0 0 0.5 0 5/8 6/8 2 1 ... i (m3, P5) (m3, P5) (1, 3, 5) (1, 3, 5), minor (1, b3, 5) (1, 3, 5) a i i
1 2 1 1/2 1/2 2.5 0 0 6/8 2 1 ... iv (M3, M6) (m3, P5) (6, 1, 4) (6, 1, 4), minor (b6, 1, 4) (6, 1, 4) a i iv6
2 2 1 3 3 0.5 5/8 5/8 6/8 2 1 ... V (M3, P5) (M3, P5) (5, #7, 2) (5, #7, 2), minor (5, 7, 2) (5, #7, 2) a i V
3 3 2 7/2 7/2 2.5 0 0 6/8 2 1 ... V (a4, a6) (M3, d5) (6, 2, #4) (6, 2, #4), minor (b6, 2, #4) (6, 2, #4) a i V64(#6b5)/V
4 3 2 6 6 0.5 5/8 5/8 6/8 2 1 ... V (M3, a4, a6) (M3, d5, m7) (6, 1, 2, #4) (6, 1, 2, #4), minor (b6, 1, 2, #4) (6, 1, 2, #4) a i V43(b5)/V

5 rows × 51 columns

Concatenated annotation tables contains 1433 rows.
Dataset contains 1433 tokens and 402 types over 2 documents.