Annotations#
Show imports
import os
from collections import defaultdict, Counter
from fractions import Fraction
from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from utils import STD_LAYOUT, CADENCE_COLORS, CORPUS_COLOR_SCALE, TYPE_COLORS, chronological_corpus_order, color_background, corpus_mean_composition_years, get_corpus_display_name, get_repo_name, resolve_dir, value_count_df, get_repo_name, print_heading, resolve_dir
Show source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------
CORPUS_PATH: '/home/runner/work/workflow_deployment/tchaikovsky_seasons'
Show source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------
Data repo 'tchaikovsky_seasons' @ 9a42958
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
---------------------------------------------------------------------------
DeprecationWarning Traceback (most recent call last)
Cell In[5], line 3
1 annotated_view = dataset.data.get_view('annotated')
2 annotated_view.include('facets', 'measures', 'notes$', 'expanded')
----> 3 annotated_view.fnames_with_incomplete_facets = False
4 dataset.data.set_view(annotated_view)
5 dataset.data.parse_tsv(choose='auto')
File ~/.local/lib/python3.10/site-packages/ms3/view.py:124, in View.fnames_with_incomplete_facets(self, value)
122 @fnames_with_incomplete_facets.setter
123 def fnames_with_incomplete_facets(self, value):
--> 124 raise DeprecationWarning(
125 "'fnames_with_incomplete_facets' was renamed to 'pieces_with_incomplete_facets' in "
126 "ms3 v2."
127 )
DeprecationWarning: 'fnames_with_incomplete_facets' was renamed to 'pieces_with_incomplete_facets' in ms3 v2.
all_metadata = dataset.data.metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
print(f"Metadata covers {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
mean_composition_years = corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, CORPUS_COLOR_SCALE))
corpus_names = {corp: get_corpus_display_name(corp) for corp in chronological_order}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {corpus_names[corp]: color for corp, color in corpus_colors.items()}
DCML harmony labels#
Show source
try:
all_annotations = dataset.get_facet('expanded')
except Exception:
all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
display(all_annotations.head())
print(f"Concatenated annotation tables contain {all_annotations.shape[0]} rows.")
no_chord = all_annotations.root.isna()
if no_chord.sum() > 0:
print(f"{no_chord.sum()} of them are not chords. Their values are: {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}")
all_chords = all_annotations[~no_chord].copy()
print(f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over {len(all_chords.groupby(level=[0,1]))} documents.")
all_annotations['corpus_name'] = all_annotations.index.get_level_values(0).map(corpus_names)
all_chords['corpus_name'] = all_chords.index.get_level_values(0).map(corpus_names)
else:
print(f"Dataset contains no annotations.")
Phrases#
Presence of phrase annotation symbols per dataset:#
all_annotations.groupby(["corpus"]).phraseend.value_counts()
Presence of legacy phrase endings#
legacy = all_annotations[all_annotations.phraseend == r'\\']
legacy.groupby(level=0).size()
A table with the extents of all annotated phrases#
Relevant columns:
quarterbeats
: start position for each phraseduration_qb
: duration of each phrase, measured in quarter notesphrase_slice
: time interval of each annotated phrases (for segmenting chord progressions and notes)
phrase_segmented = dc.PhraseSlicer().process_data(dataset)
phrases = phrase_segmented.get_slice_info()
print(f"Overall number of phrases is {len(phrases.index)}")
phrases.head(10).style.apply(color_background, subset=["quarterbeats", "duration_qb"])
A table with the chord sequences of all annotated phrases#
phrase_segments = phrase_segmented.get_facet('expanded')
phrase_segments
Show source
phrase2timesigs = phrase_segments.groupby(level=[0,1,2]).timesig.unique()
n_timesignatures_per_phrase = phrase2timesigs.map(len)
uniform_timesigs = phrase2timesigs[n_timesignatures_per_phrase == 1].map(lambda l: l[0])
more_than_one = n_timesignatures_per_phrase > 1
print(f"Filtered out the {more_than_one.sum()} phrases incorporating more than one time signature.")
n_timesigs = n_timesignatures_per_phrase.value_counts()
display(n_timesigs.reset_index().rename(columns=dict(index='#time signatures', timesig='#phrases')))
uniform_timesig_phrases = phrases.loc[uniform_timesigs.index]
timesig_in_quarterbeats = uniform_timesigs.map(Fraction) * 4
exact_measure_lengths = uniform_timesig_phrases.duration_qb / timesig_in_quarterbeats
uniform_timesigs = pd.concat([exact_measure_lengths.rename('duration_measures'), uniform_timesig_phrases], axis=1)
fig = px.histogram(uniform_timesigs, x='duration_measures', log_y=True,
labels=dict(duration_measures='phrase length bin in number of measures'),
color_discrete_sequence=CORPUS_COLOR_SCALE,
)
fig.update_traces(xbins=dict( # bins used for histogram
#start=0.0,
#end=100.0,
size=1
))
fig.update_layout(**STD_LAYOUT)
fig.update_xaxes(dtick=4, gridcolor='lightgrey')
fig.update_yaxes(gridcolor='lightgrey')
fig.show()
Local keys per phrase#
local_keys_per_phrase = phrase_segments.groupby(level=[0,1,2]).localkey.unique().map(tuple)
n_local_keys_per_phrase = local_keys_per_phrase.map(len)
phrases_with_keys = pd.concat([n_local_keys_per_phrase.rename('n_local_keys'),
local_keys_per_phrase.rename('local_keys'),
phrases], axis=1)
phrases_with_keys.head(10).style.apply(color_background, subset=['n_local_keys', 'local_keys'])
Number of unique local keys per phrase#
count_n_keys = phrases_with_keys.n_local_keys.value_counts().rename("#phrases").to_frame()
count_n_keys.index.rename("unique keys", inplace=True)
count_n_keys
The most frequent keys for non-modulating phrases#
unique_key_selector = phrases_with_keys.n_local_keys == 1
phrases_with_unique_key = phrases_with_keys[unique_key_selector].copy()
phrases_with_unique_key.local_keys = phrases_with_unique_key.local_keys.map(lambda t: t[0])
value_count_df(phrases_with_unique_key.local_keys, counts="#phrases")
Most frequent modulations within one phrase#
two_keys_selector = phrases_with_keys.n_local_keys > 1
phrases_with_unique_key = phrases_with_keys[two_keys_selector].copy()
value_count_df(phrases_with_unique_key.local_keys, "modulations")
Key areas#
from ms3 import roman_numeral2fifths, transform, resolve_all_relative_numerals, replace_boolean_mode_by_strings
keys_segmented = dc.LocalKeySlicer().process_data(dataset)
keys = keys_segmented.get_slice_info()
print(f"Overall number of key segments is {len(keys.index)}")
keys["localkey_fifths"] = transform(keys, roman_numeral2fifths, ['localkey', 'globalkey_is_minor'])
keys.head(5).style.apply(color_background, subset="localkey")
Durational distribution of local keys#
All durations given in quarter notes
key_durations = keys.groupby(['globalkey_is_minor', 'localkey']).duration_qb.sum().sort_values(ascending=False)
print(f"{len(key_durations)} keys overall including hierarchical such as 'III/v'.")
keys_resolved = resolve_all_relative_numerals(keys)
key_resolved_durations = keys_resolved.groupby(['globalkey_is_minor', 'localkey']).duration_qb.sum().sort_values(ascending=False)
print(f"{len(key_resolved_durations)} keys overall after resolving hierarchical ones.")
key_resolved_durations
Distribution of local keys for piece in major and in minor#
globalkey_mode=minor
=> Piece is in Minor
pie_data = replace_boolean_mode_by_strings(key_resolved_durations.reset_index())
px.pie(pie_data, names='localkey', values='duration_qb', facet_col='globalkey_mode')
Distribution of intervals between localkey tonic and global tonic#
localkey_fifths_durations = keys.groupby(['localkey_fifths', 'localkey_is_minor']).duration_qb.sum()
bar_data = replace_boolean_mode_by_strings(localkey_fifths_durations.reset_index())
bar_data.localkey_fifths = bar_data.localkey_fifths.map(ms3.fifths2iv)
fig = px.bar(bar_data, x='localkey_fifths', y='duration_qb', color='localkey_mode', log_y=True, barmode='group',
labels=dict(localkey_fifths='Roots of local keys as intervallic distance from the global tonic',
duration_qb='total duration in quarter notes',
localkey_mode='mode'
),
color_discrete_sequence=CORPUS_COLOR_SCALE,
)
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.show()
Ratio between major and minor key segments by aggregated durations#
Overall#
keys.duration_qb = pd.to_numeric(keys.duration_qb)
maj_min_ratio = keys.groupby("localkey_is_minor").duration_qb.sum().to_frame()
maj_min_ratio['fraction'] = (100.0 * maj_min_ratio.duration_qb / maj_min_ratio.duration_qb.sum()).round(1)
maj_min_ratio
By dataset#
segment_duration_per_dataset = keys.groupby(["corpus", "localkey_is_minor"]).duration_qb.sum().round(2)
norm_segment_duration_per_dataset = 100 * segment_duration_per_dataset / segment_duration_per_dataset.groupby(level="corpus").sum()
maj_min_ratio_per_dataset = pd.concat([segment_duration_per_dataset,
norm_segment_duration_per_dataset.rename('fraction').round(1).astype(str)+" %"],
axis=1)
maj_min_ratio_per_dataset['corpus_name'] = maj_min_ratio_per_dataset.index.get_level_values('corpus').map(corpus_names)
maj_min_ratio_per_dataset['mode'] = maj_min_ratio_per_dataset.index.get_level_values('localkey_is_minor').map({False: 'major', True: 'minor'})
fig = px.bar(maj_min_ratio_per_dataset.reset_index(),
x="corpus_name",
y="duration_qb",
color="mode",
text='fraction',
labels=dict(dataset='', duration_qb="duration in 𝅘𝅥", corpus_name='Key segments grouped by corpus'),
category_orders=dict(dataset=chronological_order)
)
fig.update_layout(**STD_LAYOUT)
fig.show()
Tone profiles for all major and minor local keys#
notes_by_keys = keys_segmented.get_facet("notes")
notes_by_keys
keys = keys[[col for col in keys.columns if col not in notes_by_keys]]
notes_joined_with_keys = notes_by_keys.join(keys, on=keys.index.names)
notes_by_keys_transposed = ms3.transpose_notes_to_localkey(notes_joined_with_keys)
mode_tpcs = notes_by_keys_transposed.reset_index(drop=True).groupby(['localkey_is_minor', 'tpc']).duration_qb.sum().reset_index(-1).sort_values('tpc').reset_index()
mode_tpcs['sd'] = ms3.fifths2sd(mode_tpcs.tpc)
mode_tpcs['duration_pct'] = mode_tpcs.groupby('localkey_is_minor', group_keys=False).duration_qb.apply(lambda S: S / S.sum())
mode_tpcs['mode'] = mode_tpcs.localkey_is_minor.map({False: 'major', True: 'minor'})
#mode_tpcs = mode_tpcs[mode_tpcs['duration_pct'] > 0.001]
#sd_order = ['b1', '1', '#1', 'b2', '2', '#2', 'b3', '3', 'b4', '4', '#4', '##4', 'b5', '5', '#5', 'b6','6', '#6', 'b7', '7']
xaxis = dict(
tickmode = 'array',
tickvals = mode_tpcs.tpc,
ticktext = mode_tpcs.sd
)
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
)
fig = px.bar(mode_tpcs,
x='tpc',
y='duration_pct',
color='mode',
barmode='group',
labels=dict(duration_pct='normalized duration',
tpc="Notes transposed to the local key, as major-scale degrees",
),
#log_y=True,
#category_orders=dict(sd=sd_order)
)
fig.update_layout(**STD_LAYOUT, xaxis=xaxis, legend=legend)
fig.show()
Harmony labels#
Unigrams#
For computing unigram statistics, the tokens need to be grouped by their occurrence within a major or a minor key because this changes their meaning. To that aim, the annotated corpus needs to be sliced into contiguous localkey segments which are then grouped into a major (is_minor=False
) and a minor group.
root_durations = all_chords[all_chords.root.between(-5,6)].groupby(['root', 'chord_type']).duration_qb.sum()
# sort by stacked bar length:
#root_durations = root_durations.sort_values(key=lambda S: S.index.get_level_values(0).map(S.groupby(level=0).sum()), ascending=False)
bar_data = root_durations.reset_index()
bar_data.root = bar_data.root.map(ms3.fifths2iv)
px.bar(bar_data, x='root', y='duration_qb', color='chord_type')
relative_roots = all_chords[['numeral', 'duration_qb', 'relativeroot', 'localkey_is_minor', 'chord_type']].copy()
relative_roots['relativeroot_resolved'] = transform(relative_roots, ms3.resolve_relative_keys, ['relativeroot', 'localkey_is_minor'])
has_rel = relative_roots.relativeroot_resolved.notna()
relative_roots.loc[has_rel, 'localkey_is_minor'] = relative_roots.loc[has_rel, 'relativeroot_resolved'].str.islower()
relative_roots['root'] = transform(relative_roots, roman_numeral2fifths, ['numeral', 'localkey_is_minor'])
chord_type_frequency = all_chords.chord_type.value_counts()
replace_rare = ms3.map_dict({t: 'other' for t in chord_type_frequency[chord_type_frequency < 500].index})
relative_roots['type_reduced'] = relative_roots.chord_type.map(replace_rare)
#is_special = relative_roots.chord_type.isin(('It', 'Ger', 'Fr'))
#relative_roots.loc[is_special, 'root'] = -4
root_durations = relative_roots.groupby(['root', 'type_reduced']).duration_qb.sum().sort_values(ascending=False)
bar_data = root_durations.reset_index()
bar_data.root = bar_data.root.map(ms3.fifths2iv)
root_order = bar_data.groupby('root').duration_qb.sum().sort_values(ascending=False).index.to_list()
fig = px.bar(bar_data, x='root', y='duration_qb', color='type_reduced', barmode='group', log_y=True,
color_discrete_map=TYPE_COLORS,
category_orders=dict(root=root_order,
type_reduced=relative_roots.type_reduced.value_counts().index.to_list(),
),
labels=dict(root="intervallic difference between chord root to the local or secondary tonic",
duration_qb="duration in quarter notes",
type_reduced="chord type",
),
width=1000,
height=400,
)
fig.update_layout(**STD_LAYOUT,
legend=dict(
orientation='h',
xanchor="right",
x=1,
y=1,
)
)
fig.update_yaxes(gridcolor='lightgrey')
fig.show()
print(f"Reduced to {len(set(bar_data.iloc[:,:2].itertuples(index=False, name=None)))} types. Paper cites the sum of types in major and types in minor (see below), treating them as distinct.")
dim_or_aug = bar_data[bar_data.root.str.startswith("a") | bar_data.root.str.startswith("d")].duration_qb.sum()
complete = bar_data.duration_qb.sum()
print(f"On diminished or augmented scale degrees: {dim_or_aug} / {complete} = {dim_or_aug / complete}")
mode_slices = dc.ModeGrouper().process_data(keys_segmented)
Whole dataset#
mode_slices.get_slice_info()
unigrams = dc.ChordSymbolUnigrams(once_per_group=True).process_data(mode_slices)
unigrams.group2pandas = "group_of_series2series"
unigrams.get(as_pandas=True)
k = 20
modes = {True: 'MINOR', False: 'MAJOR'}
for (is_minor,), ugs in unigrams.iter():
print(f"TOP {k} {modes[is_minor]} UNIGRAMS\n{ugs.shape[0]} types, {ugs.sum()} tokens")
print(ugs.head(k).to_string())
ugs_dict = {modes[is_minor].lower(): (ugs/ugs.sum() * 100).round(2).rename('%').reset_index() for (is_minor,), ugs in unigrams.iter()}
ugs_df = pd.concat(ugs_dict, axis=1)
ugs_df.columns = ['_'.join(map(str, col)) for col in ugs_df.columns]
ugs_df.index = (ugs_df.index + 1).rename('k')
print(ugs_df.iloc[:50].to_markdown())
Per corpus#
corpus_wise_unigrams = dc.Pipeline([dc.CorpusGrouper(), dc.ChordSymbolUnigrams(once_per_group=True)]).process_data(mode_slices)
corpus_wise_unigrams.get()
for (is_minor, corpus_name), ugs in corpus_wise_unigrams.iter():
print(f"{corpus_name} {modes[is_minor]} unigrams ({ugs.shape[0]} types, {ugs.sum()} tokens)")
print(ugs.head(5).to_string())
types_shared_between_corpora = {}
for (is_minor, corpus_name), ugs in corpus_wise_unigrams.iter():
if is_minor in types_shared_between_corpora:
types_shared_between_corpora[is_minor] = types_shared_between_corpora[is_minor].intersection(ugs.index)
else:
types_shared_between_corpora[is_minor] = set(ugs.index)
types_shared_between_corpora = {k: sorted(v, key=lambda x: unigrams.get()[(k, x)], reverse=True) for k, v in types_shared_between_corpora.items()}
n_types = {k: len(v) for k, v in types_shared_between_corpora.items()}
print(f"Chords which occur in all corpora, sorted by descending global frequency:\n{types_shared_between_corpora}\nCounts: {n_types}")
Per piece#
piece_wise_unigrams = dc.Pipeline([dc.PieceGrouper(), dc.ChordSymbolUnigrams(once_per_group=True)]).process_data(mode_slices)
piece_wise_unigrams.get()
types_shared_between_pieces = {}
for (is_minor, corpus_name), ugs in piece_wise_unigrams.iter():
if is_minor in types_shared_between_pieces:
types_shared_between_pieces[is_minor] = types_shared_between_pieces[is_minor].intersection(ugs.index)
else:
types_shared_between_pieces[is_minor] = set(ugs.index)
print(types_shared_between_pieces)
Bigrams#
Whole dataset#
bigrams = dc.ChordSymbolBigrams(once_per_group=True).process_data(mode_slices)
bigrams.get()
modes = {True: 'MINOR', False: 'MAJOR'}
for (is_minor,), ugs in bigrams.iter():
print(f"{modes[is_minor]} BIGRAMS\n{ugs.shape[0]} transition types, {ugs.sum()} tokens")
print(ugs.head(20).to_string())
Per corpus#
corpus_wise_bigrams = dc.Pipeline([dc.CorpusGrouper(), dc.ChordSymbolBigrams(once_per_group=True)]).process_data(mode_slices)
corpus_wise_bigrams.get()
for (is_minor, corpus_name), ugs in corpus_wise_bigrams.iter():
print(f"{corpus_name} {modes[is_minor]} bigrams ({ugs.shape[0]} transition types, {ugs.sum()} tokens)")
print(ugs.head(5).to_string())
normalized_corpus_unigrams = {group: (100 * ugs / ugs.sum()).round(1).rename("frequency") for group, ugs in corpus_wise_unigrams.iter()}
transitions_from_shared_types = {
False: {},
True: {}
}
for (is_minor, corpus_name), bgs in corpus_wise_bigrams.iter():
transitions_normalized_per_from = bgs.groupby(level="from", group_keys=False).apply(lambda S: (100 * S / S.sum()).round(1))
most_frequent_transition_per_from = transitions_normalized_per_from.rename('fraction').reset_index(level=1).groupby(level=0).nth(0)
most_frequent_transition_per_shared = most_frequent_transition_per_from.loc[types_shared_between_corpora[is_minor]]
unigram_frequency_of_shared = normalized_corpus_unigrams[(is_minor, corpus_name)].loc[types_shared_between_corpora[is_minor]]
combined = pd.concat([unigram_frequency_of_shared, most_frequent_transition_per_shared], axis=1)
transitions_from_shared_types[is_minor][corpus_name] = combined
pd.concat(transitions_from_shared_types[False].values(), keys=transitions_from_shared_types[False].keys(), axis=1)
pd.concat(transitions_from_shared_types[True].values(), keys=transitions_from_shared_types[False].keys(), axis=1)
Per piece#
piece_wise_bigrams = dc.Pipeline([dc.PieceGrouper(), dc.ChordSymbolBigrams(once_per_group=True)]).process_data(mode_slices)
piece_wise_bigrams.get()