Notes#

Hide imports
import os

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting

import utils

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 500)
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "notes_stats"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("mendelssohn_quartets", corpus_release="v2.4")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Felix Mendelssohn – String Quartets version v2.4")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Felix Mendelssohn – String Quartets version v2.4
Datapackage 'mendelssohn_quartets' @ v2.4
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'mendelssohn_quartets': ["'mendelssohn_quartets.measures' "
                                                  '(MuseScoreFacetName.MuseScoreMeasures)',
                                                  "'mendelssohn_quartets.notes' (MuseScoreFacetName.MuseScoreNotes)",
                                                  "'mendelssohn_quartets.expanded' "
                                                  '(MuseScoreFacetName.MuseScoreHarmonies)',
                                                  "'mendelssohn_quartets.chords' (MuseScoreFacetName.MuseScoreChords)",
                                                  "'mendelssohn_quartets.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}

Metadata#

filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)

all_metadata = filtered_D.get_metadata()
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:, :20]
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count annotated_key harmony_version annotators reviewers
corpus
mendelssohn_quartets 01op12a {1: '4/4'} {1: -3} 294 292 1168.0 294 292 1168.0 () 4329.0 3638 1702 0 0 673 Eb 2.1.0 Adrian Nagel <NA>
chronological_order = utils.chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
notes_feature = filtered_D.get_feature("notes")
all_notes = notes_feature.df
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
99029 notes over 24 files.
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice volta chord_id gracenote midi name nominal_duration octave scalar tied tremolo tpc_name tpc
corpus piece i
mendelssohn_quartets 01op12a 0 1 1 0 0 4.0 1 0 0 4/4 4 1 <NA> 5 <NA> 51 Eb3 1 3 1 <NA> <NA> Eb -3
1 1 1 0 0 4.0 1 0 0 4/4 3 1 <NA> 4 <NA> 58 Bb3 1 3 1 <NA> <NA> Bb -2
2 1 1 0 0 4.0 1 0 0 4/4 2 1 <NA> 3 <NA> 63 Eb4 1 4 1 1 <NA> Eb -3
3 1 1 0 0 2.0 1/2 0 0 4/4 1 1 <NA> 0 <NA> 67 G4 1/2 4 1 <NA> <NA> G 1
4 1 1 2 2 1.5 3/8 1/2 1/2 4/4 1 1 <NA> 1 <NA> 73 Db5 1/4 5 3/2 <NA> <NA> Db -5
def weight_notes(nl, group_col="midi", precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration  # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)


def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch] * count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
all_notes["corpus_name"] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby("corpus_name")
weighted_midi = pd.concat(
    [weight_notes(nl, "midi", precise=False) for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_midi.columns = ["dataset", "midi"]
weighted_midi
dataset midi
0 Mendelssohn Quartets 36
1 Mendelssohn Quartets 36
2 Mendelssohn Quartets 36
3 Mendelssohn Quartets 36
4 Mendelssohn Quartets 36
... ... ...
8001 Mendelssohn Quartets 94
8002 Mendelssohn Quartets 94
8003 Mendelssohn Quartets 94
8004 Mendelssohn Quartets 95
8005 Mendelssohn Quartets 96

8006 rows × 2 columns

# fig = px.violin(weighted_midi,
#                 x='dataset',
#                 y='midi',
#                 color='dataset',
#                 title="Corpus-wise distribution over registers (ambitus)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     midi='distribution of pitches by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000, height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
#     ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "ambitus_corpuswise_violins")
# fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat(
    [weight_notes(nl, "tpc") for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_tpc.columns = ["dataset", "tpc"]
weighted_tpc
dataset tpc
0 Mendelssohn Quartets -9
1 Mendelssohn Quartets -9
2 Mendelssohn Quartets -9
3 Mendelssohn Quartets -9
4 Mendelssohn Quartets -9
... ... ...
80062 Mendelssohn Quartets 13
80063 Mendelssohn Quartets 13
80064 Mendelssohn Quartets 13
80065 Mendelssohn Quartets 13
80066 Mendelssohn Quartets 14

80067 rows × 2 columns

As violin plot#

# fig = px.violin(weighted_tpc,
#                 x='dataset',
#                 y='tpc',
#                 color='dataset',
#                 title="Corpus-wise distribution over line of fifths (tonal pitch classes)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     tpc='distribution of tonal pitch classes by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000,
#                 height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
#     ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
#     zerolinecolor='grey',
#     zeroline=True
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "pitch_class_distributions_corpuswise_violins")
# fig.show()
(all_notes)
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice volta chord_id gracenote midi name nominal_duration octave scalar tied tremolo tpc_name tpc corpus_name
corpus piece i
mendelssohn_quartets 01op12a 0 1 1 0 0 4.0 1 0 0 4/4 4 1 <NA> 5 <NA> 51 Eb3 1 3 1 <NA> <NA> Eb -3 Mendelssohn Quartets
1 1 1 0 0 4.0 1 0 0 4/4 3 1 <NA> 4 <NA> 58 Bb3 1 3 1 <NA> <NA> Bb -2 Mendelssohn Quartets
2 1 1 0 0 4.0 1 0 0 4/4 2 1 <NA> 3 <NA> 63 Eb4 1 4 1 1 <NA> Eb -3 Mendelssohn Quartets
3 1 1 0 0 2.0 1/2 0 0 4/4 1 1 <NA> 0 <NA> 67 G4 1/2 4 1 <NA> <NA> G 1 Mendelssohn Quartets
4 1 1 2 2 1.5 3/8 1/2 1/2 4/4 1 1 <NA> 1 <NA> 73 Db5 1/4 5 3/2 <NA> <NA> Db -5 Mendelssohn Quartets
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
06op80d 4000 461 461 920 920 1.0 1/4 0 0 2/4 3 1 <NA> 3854 <NA> 56 Ab3 1/4 3 1 <NA> <NA> Ab -4 Mendelssohn Quartets
4001 461 461 920 920 1.0 1/4 0 0 2/4 1 1 <NA> 3852 <NA> 65 F4 1/4 4 1 <NA> <NA> F -1 Mendelssohn Quartets
4002 461 461 920 920 1.0 1/4 0 0 2/4 2 1 <NA> 3853 <NA> 65 F4 1/4 4 1 <NA> <NA> F -1 Mendelssohn Quartets
4003 461 461 920 920 1.0 1/4 0 0 2/4 1 1 <NA> 3852 <NA> 72 C5 1/4 5 1 <NA> <NA> C 0 Mendelssohn Quartets
4004 461 461 920 920 1.0 1/4 0 0 2/4 1 1 <NA> 3852 <NA> 77 F5 1/4 5 1 <NA> <NA> F -1 Mendelssohn Quartets

99029 rows × 24 columns

width = 1400
height = 800

weighted_pitch_values = pd.concat(
    [
        weighted_midi.rename(columns={"midi": "value"}),
        weighted_tpc.rename(columns={"tpc": "value"}),
    ],
    keys=["MIDI pitch", "Tonal pitch class"],
    names=["distribution"],
).reset_index(level=[0, 1])

fig = plotting.make_violin_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Dark24,
    traces_settings=dict(
        spanmode="hard",
        width=1,
        # scalemode='width'
    ),
    layout=dict(
        showlegend=False,
        margin=dict(
            t=0,
            b=0,
            l=0,
            r=0,
        ),
    ),
    x_axis=dict(
        # tickangle=45,
        tickfont_size=15
    ),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=dict(title_text=""))
save_figure_as(fig, "notes_violin", width=width, height=height)
fig
fig = plotting.make_box_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    # box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Light24,
    # traces_settings=dict(spanmode='hard'),
    layout=dict(showlegend=False, margin=dict(t=0)),
    x_axis=dict(tickangle=45, tickfont_size=15),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=True)
save_figure_as(fig, "notes_box", width=width, height=height)
fig

As bar plots#

bar_data = all_notes.groupby("tpc").duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max() + 1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(
    bar_data,
    x="tpc",
    y="duration_qb",
    labels=dict(tpc="Named pitch class", duration_qb="Duration in quarter notes"),
    color_discrete_sequence=utils.CORPUS_COLOR_SCALE,
    width=1000,
    height=300,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_absolute_bars")
fig.show()
scatter_data = all_notes.groupby(["corpus_name", "tpc"]).duration_qb.sum().reset_index()
fig = px.bar(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    width=1000,
    height=500,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_corpuswise_absolute_bars")
fig.show()

As scatter plots#

fig = px.scatter(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    facet_col="corpus_name",
    facet_col_wrap=3,
    facet_col_spacing=0.03,
    width=1000,
    height=1000,
)
fig.update_traces(mode="lines+markers")
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT, showlegend=False)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=[-12, -6, 0, 6, 12, 18],
    ticktext=["Dbb", "Gb", "C", "F#", "B#", "E##"],
    visible=True,
)
fig.update_yaxes(zeroline=False, matches=None, showticklabels=True)
save_figure_as(fig, "pitch_class_distribution_corpuswise_scatter")
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1, 5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1, 5)].duration_qb.sum()
entire = no_accidental + with_accidental
(
    f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = "
    f"{no_accidental / entire}"
)
'Fraction of note duration without accidental of the entire durations: 52589.816666666666 / 80066.5 = 0.6568267211214012'

Notes and staves#

print("Distribution of notes over staves:")
utils.value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 29110 29.4
2 25912 26.17
3 25009 25.25
4 18998 19.18