--- jupytext: formats: ipynb,md:myst,py:percent text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.17.0 kernelspec: display_name: corpus_docs language: python name: corpus_docs --- # Annotations ```{code-cell} ipython3 --- mystnb: code_prompt_hide: Hide imports code_prompt_show: Show imports tags: [hide-input] --- %load_ext autoreload %autoreload 2 import os import dimcat as dc import ms3 import plotly.express as px from dimcat import groupers, plotting import utils ``` ```{code-cell} ipython3 --- editable: true slideshow: slide_type: '' tags: [hide-input] --- RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview")) os.makedirs(RESULTS_PATH, exist_ok=True) def make_output_path( filename: str, extension=None, path=RESULTS_PATH, ) -> str: return utils.make_output_path(filename=filename, extension=extension, path=path) def save_figure_as( fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs ): if formats is not None: for fmt in formats: plotting.write_image(fig, filename, directory, format=fmt, **kwargs) else: plotting.write_image(fig, filename, directory, **kwargs) ``` **Loading data** ```{code-cell} ipython3 --- editable: true slideshow: slide_type: '' tags: [hide-input] --- D = utils.get_dataset("liszt_pelerinage", corpus_release="v2.3") package = D.inputs.get_package() package_info = package._package.custom git_tag = package_info.get("git_tag") utils.print_heading("Data and software versions") print("Franz Liszt – Années de Pèlerinage version v2.3") print(f"Datapackage '{package.package_name}' @ {git_tag}") print(f"dimcat version {dc.__version__}\n") D ``` ```{code-cell} ipython3 --- editable: true slideshow: slide_type: '' tags: [hide-input] --- ``` ```{code-cell} ipython3 --- editable: true slideshow: slide_type: '' --- filtered_D = D.apply_step("HasHarmonyLabelsFilter") all_metadata = filtered_D.get_metadata() ``` ```{code-cell} ipython3 assert len(all_metadata) > 0, "No pieces selected for analysis." chronological_corpus_names = all_metadata.get_corpus_names() ``` ## DCML harmony labels ```{code-cell} ipython3 :tags: [hide-input] all_annotations = filtered_D.get_feature("DcmlAnnotations") is_annotated_mask = all_metadata.label_count > 0 is_annotated_index = all_metadata.index[is_annotated_mask] annotated_notes = filtered_D.get_feature("notes").subselect(is_annotated_index) print(f"The annotated pieces have {len(annotated_notes)} notes.") ``` ```{code-cell} ipython3 all_chords = filtered_D.get_feature("harmonylabels") print( f"{len(all_annotations)} annotations, of which {len(all_chords)} are harmony labels." ) ``` ## Harmony labels ### Unigrams For computing unigram statistics, the tokens need to be grouped by their occurrence within a major or a minor key because this changes their meaning. To that aim, the annotated corpus needs to be sliced into contiguous localkey segments which are then grouped into a major (`is_minor=False`) and a minor group. ```{code-cell} ipython3 root_durations = ( all_chords[all_chords.root.between(-5, 6)] .groupby(["root", "chord_type"]) .duration_qb.sum() ) # sort by stacked bar length: # root_durations = root_durations.sort_values(key=lambda S: S.index.get_level_values(0).map(S.groupby(level=0).sum()), # ascending=False) bar_data = root_durations.reset_index() bar_data.root = bar_data.root.map(ms3.fifths2iv) fig = px.bar( bar_data, x="root", y="duration_qb", color="chord_type", title="Distribution of chord types over chord roots", labels=dict( root="Chord root expressed as interval above the local (or secondary) tonic", duration_qb="duration in quarter notes", chord_type="chord type", ), ) fig.update_layout(**utils.STD_LAYOUT) save_figure_as(fig, "chord_type_distribution_over_scale_degrees_absolute_stacked_bars") fig.show() ``` ```{code-cell} ipython3 relative_roots = all_chords[ ["numeral", "duration_qb", "relativeroot", "localkey_is_minor", "chord_type"] ].copy() relative_roots["relativeroot_resolved"] = ms3.transform( relative_roots, ms3.resolve_relative_keys, ["relativeroot", "localkey_is_minor"] ) has_rel = relative_roots.relativeroot_resolved.notna() relative_roots.loc[has_rel, "localkey_is_minor"] = relative_roots.loc[ has_rel, "relativeroot_resolved" ].str.islower() relative_roots["root"] = ms3.transform( relative_roots, ms3.roman_numeral2fifths, ["numeral", "localkey_is_minor"] ) chord_type_frequency = all_chords.chord_type.value_counts() replace_rare = ms3.map_dict( {t: "other" for t in chord_type_frequency[chord_type_frequency < 500].index} ) relative_roots["type_reduced"] = relative_roots.chord_type.map(replace_rare) # is_special = relative_roots.chord_type.isin(('It', 'Ger', 'Fr')) # relative_roots.loc[is_special, 'root'] = -4 ``` ```{code-cell} ipython3 root_durations = ( relative_roots.groupby(["root", "type_reduced"]) .duration_qb.sum() .sort_values(ascending=False) ) bar_data = root_durations.reset_index() bar_data.root = bar_data.root.map(ms3.fifths2iv) root_order = ( bar_data.groupby("root") .duration_qb.sum() .sort_values(ascending=False) .index.to_list() ) fig = px.bar( bar_data, x="root", y="duration_qb", color="type_reduced", barmode="group", log_y=True, color_discrete_map=utils.TYPE_COLORS, category_orders=dict( root=root_order, type_reduced=relative_roots.type_reduced.value_counts().index.to_list(), ), labels=dict( root="intervallic difference between chord root to the local or secondary tonic", duration_qb="duration in quarter notes", type_reduced="chord type", ), width=1000, height=400, ) fig.update_layout( **utils.STD_LAYOUT, legend=dict( orientation="h", xanchor="right", x=1, y=1, ), ) save_figure_as(fig, "chord_type_distribution_over_scale_degrees_absolute_grouped_bars") fig.show() ``` ```{code-cell} ipython3 print( f"Reduced to {len(set(bar_data.iloc[:,:2].itertuples(index=False, name=None)))} types. " f"Paper cites the sum of types in major and types in minor (see below), treating them as distinct." ) ``` ```{code-cell} ipython3 dim_or_aug = bar_data[ bar_data.root.str.startswith("a") | bar_data.root.str.startswith("d") ].duration_qb.sum() complete = bar_data.duration_qb.sum() print( f"On diminished or augmented scale degrees: {dim_or_aug} / {complete} = {dim_or_aug / complete}" ) ``` ```{code-cell} ipython3 chords_by_mode = groupers.ModeGrouper().process(all_chords) chords_by_mode.format = "scale_degree" ``` +++ {"jp-MarkdownHeadingCollapsed": true} #### Whole dataset ```{code-cell} ipython3 unigram_proportions = chords_by_mode.get_default_analysis() unigram_proportions.make_ranking_table() ``` ```{code-cell} ipython3 chords_by_mode.apply_step("Counter") ``` ```{code-cell} ipython3 chords_by_mode.format = "scale_degree" chords_by_mode.get_default_analysis().make_ranking_table() ``` ```{code-cell} ipython3 unigram_proportions.plot_grouped() ```