Notes#

Hide imports
import os

import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting

import utils

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 500)
Hide source
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "notes_stats"))
os.makedirs(RESULTS_PATH, exist_ok=True)


def make_output_path(
    filename: str,
    extension=None,
    path=RESULTS_PATH,
) -> str:
    return utils.make_output_path(filename=filename, extension=extension, path=path)


def save_figure_as(
    fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
    if formats is not None:
        for fmt in formats:
            plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
    else:
        plotting.write_image(fig, filename, directory, **kwargs)

Loading data

Hide source
D = utils.get_dataset("jc_bach_sonatas", corpus_release="v2.4")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Johann Christian Bach – Keyboard Sonatas version v2.4")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------

Johann Christian Bach – Keyboard Sonatas version v2.4
Datapackage 'jc_bach_sonatas' @ v2.4
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
            'packages': {'jc_bach_sonatas': ["'jc_bach_sonatas.measures' (MuseScoreFacetName.MuseScoreMeasures)",
                                             "'jc_bach_sonatas.notes' (MuseScoreFacetName.MuseScoreNotes)",
                                             "'jc_bach_sonatas.expanded' (MuseScoreFacetName.MuseScoreHarmonies)",
                                             "'jc_bach_sonatas.chords' (MuseScoreFacetName.MuseScoreChords)",
                                             "'jc_bach_sonatas.metadata' (FeatureName.Metadata)"]}},
 'outputs': {'basepath': None, 'packages': {}},
 'pipeline': []}

Metadata#

filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)

all_metadata = filtered_D.get_metadata()
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:, :20]
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded volta_mcs all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count annotated_key harmony_version annotators reviewers
corpus
jc_bach_sonatas wa01op05no1a_Allegretto {1: '2/4'} {1: -2} 84 82 164.0 168 164 328.0 () 313.0 896 638 0 0 120 Bb 2.3.0 Adrian Nagel (2.1.1.), Ehsan Mohagheghi Fard (... AN, EF
chronological_order = utils.chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
notes_feature = filtered_D.get_feature("notes")
all_notes = notes_feature.df
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
38003 notes over 29 files.
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice chord_id gracenote midi name nominal_duration octave scalar tied tremolo tpc_name tpc
corpus piece i
jc_bach_sonatas wa01op05no1a_Allegretto 0 1 0 0 0 0.375 3/32 0 3/8 2/4 1 1 0 <NA> 74 D5 1/16 5 3/2 <NA> <NA> D 2
1 1 0 3/8 3/8 0.125 1/32 3/32 15/32 2/4 1 1 1 <NA> 75 Eb5 1/32 5 1 <NA> <NA> Eb -3
2 2 1 1/2 1/2 1.000 1/4 0 0 2/4 1 2 7 <NA> 74 D5 1/4 5 1 <NA> <NA> D 2
3 2 1 1/2 1/2 1.000 1/4 0 0 2/4 1 1 2 <NA> 77 F5 1/4 5 1 <NA> <NA> F -1
4 2 1 3/4 3/4 0.250 1/16 1/16 1/16 2/4 2 1 8 <NA> 58 Bb3 1/16 3 1 <NA> <NA> Bb -2
def weight_notes(nl, group_col="midi", precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration  # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)


def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch] * count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {
    corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
    corpus_names[corp]: color for corp, color in corpus_colors.items()
}
all_notes["corpus_name"] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby("corpus_name")
weighted_midi = pd.concat(
    [weight_notes(nl, "midi", precise=False) for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_midi.columns = ["dataset", "midi"]
weighted_midi
dataset midi
0 JC Bach Sonatas 29
1 JC Bach Sonatas 31
2 JC Bach Sonatas 32
3 JC Bach Sonatas 32
4 JC Bach Sonatas 32
... ... ...
6081 JC Bach Sonatas 87
6082 JC Bach Sonatas 88
6083 JC Bach Sonatas 88
6084 JC Bach Sonatas 89
6085 JC Bach Sonatas 89

6086 rows × 2 columns

# fig = px.violin(weighted_midi,
#                 x='dataset',
#                 y='midi',
#                 color='dataset',
#                 title="Corpus-wise distribution over registers (ambitus)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     midi='distribution of pitches by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000, height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
#     ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "ambitus_corpuswise_violins")
# fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat(
    [weight_notes(nl, "tpc") for _, nl in grouped_notes],
    keys=grouped_notes.groups.keys(),
).reset_index(level=0)
weighted_tpc.columns = ["dataset", "tpc"]
weighted_tpc
dataset tpc
0 JC Bach Sonatas -8
1 JC Bach Sonatas -7
2 JC Bach Sonatas -7
3 JC Bach Sonatas -7
4 JC Bach Sonatas -7
... ... ...
73023 JC Bach Sonatas 13
73024 JC Bach Sonatas 13
73025 JC Bach Sonatas 13
73026 JC Bach Sonatas 13
73027 JC Bach Sonatas 13

73028 rows × 2 columns

As violin plot#

# fig = px.violin(weighted_tpc,
#                 x='dataset',
#                 y='tpc',
#                 color='dataset',
#                 title="Corpus-wise distribution over line of fifths (tonal pitch classes)",
#                 box=True,
#                 labels=dict(
#                     dataset='',
#                     tpc='distribution of tonal pitch classes by duration'
#                 ),
#                 category_orders=dict(dataset=chronological_corpus_names),
#                 color_discrete_map=corpus_name_colors,
#                 width=1000,
#                 height=600,
#                )
# fig.update_traces(spanmode='hard') # do not extend beyond outliers
# fig.update_layout(**utils.STD_LAYOUT,
#                  showlegend=False)
# fig.update_yaxes(
#     tickmode= 'array',
#     tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
#     ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
#     zerolinecolor='grey',
#     zeroline=True
# )
# fig.update_xaxes(tickangle=45)
# save_figure_as(fig, "pitch_class_distributions_corpuswise_violins")
# fig.show()
(all_notes)
mc mn quarterbeats quarterbeats_all_endings duration_qb duration mc_onset mn_onset timesig staff voice chord_id gracenote midi name nominal_duration octave scalar tied tremolo tpc_name tpc corpus_name
corpus piece i
jc_bach_sonatas wa01op05no1a_Allegretto 0 1 0 0 0 0.375 3/32 0 3/8 2/4 1 1 0 <NA> 74 D5 1/16 5 3/2 <NA> <NA> D 2 JC Bach Sonatas
1 1 0 3/8 3/8 0.125 1/32 3/32 15/32 2/4 1 1 1 <NA> 75 Eb5 1/32 5 1 <NA> <NA> Eb -3 JC Bach Sonatas
2 2 1 1/2 1/2 1.000 1/4 0 0 2/4 1 2 7 <NA> 74 D5 1/4 5 1 <NA> <NA> D 2 JC Bach Sonatas
3 2 1 1/2 1/2 1.000 1/4 0 0 2/4 1 1 2 <NA> 77 F5 1/4 5 1 <NA> <NA> F -1 JC Bach Sonatas
4 2 1 3/4 3/4 0.250 1/16 1/16 1/16 2/4 2 1 8 <NA> 58 Bb3 1/16 3 1 <NA> <NA> Bb -2 JC Bach Sonatas
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
wa12op17no6c_Prestissimo 1769 107 105 1251/2 1251/2 0.500 1/8 1/4 1/4 12/8 2 1 1707 <NA> 41 F2 1/8 2 1 <NA> <NA> F -1 JC Bach Sonatas
1770 107 105 626 626 0.500 1/8 3/8 3/8 12/8 2 1 1708 <NA> 46 Bb2 1/8 2 1 <NA> <NA> Bb -2 JC Bach Sonatas
1771 107 105 1253/2 1253/2 0.500 1/8 1/2 1/2 12/8 2 1 1709 <NA> 41 F2 1/8 2 1 <NA> <NA> F -1 JC Bach Sonatas
1772 107 105 627 627 0.500 1/8 5/8 5/8 12/8 2 1 1710 <NA> 38 D2 1/8 2 1 <NA> <NA> D 2 JC Bach Sonatas
1773 107 105 1255/2 1255/2 0.500 1/8 3/4 3/4 12/8 2 1 1711 <NA> 34 Bb1 1/8 1 1 <NA> <NA> Bb -2 JC Bach Sonatas

38003 rows × 23 columns

width = 1400
height = 800

weighted_pitch_values = pd.concat(
    [
        weighted_midi.rename(columns={"midi": "value"}),
        weighted_tpc.rename(columns={"tpc": "value"}),
    ],
    keys=["MIDI pitch", "Tonal pitch class"],
    names=["distribution"],
).reset_index(level=[0, 1])

fig = plotting.make_violin_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Dark24,
    traces_settings=dict(
        spanmode="hard",
        width=1,
        # scalemode='width'
    ),
    layout=dict(
        showlegend=False,
        margin=dict(
            t=0,
            b=0,
            l=0,
            r=0,
        ),
    ),
    x_axis=dict(
        # tickangle=45,
        tickfont_size=15
    ),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=dict(title_text=""))
save_figure_as(fig, "notes_violin", width=width, height=height)
fig
fig = plotting.make_box_plot(
    weighted_pitch_values,
    x_col="dataset",
    y_col="value",
    color="dataset",
    facet_row="distribution",
    # box=True,
    labels=dict(dataset="", tpc="distribution of tonal pitch classes by duration"),
    category_orders=dict(dataset=chronological_corpus_names),
    # color_discrete_map=corpus_name_colors,
    color_discrete_sequence=px.colors.qualitative.Light24,
    # traces_settings=dict(spanmode='hard'),
    layout=dict(showlegend=False, margin=dict(t=0)),
    x_axis=dict(tickangle=45, tickfont_size=15),
    y_axis=dict(
        tickmode="array",
        tickvals=[-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 24, 36, 48, 60, 72, 84, 96],
        ticktext=[
            "Dbb",
            "Bbb",
            "Gb",
            "Eb",
            "C",
            "A",
            "F#",
            "D#",
            "B#",
            "G##",
            "C1",
            "C2",
            "C3",
            "C4",
            "C5",
            "C6",
            "C7",
        ],
        zerolinecolor="grey",
        zeroline=True,
    ),
    width=width,
    height=height,
)
utils.realign_subplot_axes(fig, y_axes=True)
save_figure_as(fig, "notes_box", width=width, height=height)
fig

As bar plots#

bar_data = all_notes.groupby("tpc").duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max() + 1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(
    bar_data,
    x="tpc",
    y="duration_qb",
    labels=dict(tpc="Named pitch class", duration_qb="Duration in quarter notes"),
    color_discrete_sequence=utils.CORPUS_COLOR_SCALE,
    width=1000,
    height=300,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_absolute_bars")
fig.show()
scatter_data = all_notes.groupby(["corpus_name", "tpc"]).duration_qb.sum().reset_index()
fig = px.bar(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    width=1000,
    height=500,
)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=x_values,
    ticktext=x_names,
    dtick=1,
    ticks="outside",
    tickcolor="black",
    minor=dict(dtick=6, gridcolor="grey", showgrid=True),
)
save_figure_as(fig, "pitch_class_distribution_corpuswise_absolute_bars")
fig.show()

As scatter plots#

fig = px.scatter(
    scatter_data,
    x="tpc",
    y="duration_qb",
    color="corpus_name",
    labels=dict(
        duration_qb="duration",
        tpc="named pitch class",
    ),
    category_orders=dict(dataset=chronological_corpus_names),
    color_discrete_map=corpus_name_colors,
    facet_col="corpus_name",
    facet_col_wrap=3,
    facet_col_spacing=0.03,
    width=1000,
    height=1000,
)
fig.update_traces(mode="lines+markers")
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**utils.STD_LAYOUT, showlegend=False)
fig.update_xaxes(
    zerolinecolor="grey",
    tickmode="array",
    tickvals=[-12, -6, 0, 6, 12, 18],
    ticktext=["Dbb", "Gb", "C", "F#", "B#", "E##"],
    visible=True,
)
fig.update_yaxes(zeroline=False, matches=None, showticklabels=True)
save_figure_as(fig, "pitch_class_distribution_corpuswise_scatter")
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1, 5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1, 5)].duration_qb.sum()
entire = no_accidental + with_accidental
(
    f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = "
    f"{no_accidental / entire}"
)
'Fraction of note duration without accidental of the entire durations: 11968.083333333332 / 18256.625 = 0.655547415435949'

Notes and staves#

print("Distribution of notes over staves:")
utils.value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 21641 56.95
2 16362 43.05