Notes#

Hide imports
import os
from collections import defaultdict, Counter

from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

from utils import STD_LAYOUT, CADENCE_COLORS, CORPUS_COLOR_SCALE, chronological_corpus_order, color_background, get_corpus_display_name, get_repo_name, resolve_dir, value_count_df, get_repo_name, print_heading, resolve_dir
Hide source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
ANNOTATED_ONLY = os.getenv("ANNOTATED_ONLY", "True").lower() in ('true', '1', 't')
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
print(f"ANNOTATED_ONLY: {ANNOTATED_ONLY}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------

CORPUS_PATH: '/home/runner/work/workflow_deployment/debussy_pour_le_piano'
ANNOTATED_ONLY: False
Hide source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------

Data repo 'debussy_pour_le_piano' @ 68840b6
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
[default|all]
All corpora
-----------
View: This view is called 'default'. It 
	- excludes pieces that are not contained in the metadata,
	- filters out file extensions requiring conversion (such as .xml), and
	- excludes review files and folders.

                           has   active   scores measures           notes       
                      metadata     view detected detected parsed detected parsed
corpus                                                                          
debussy_pour_le_piano      yes  default        3        3      3        3      3
N = 3 annotated pieces, 6 parsed dataframes.

Metadata#

all_metadata = dataset.data.metadata()
print(f"Concatenated 'metadata.tsv' files cover {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:,:20]
Concatenated 'metadata.tsv' files cover 3 of the 3 scores.
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count composed_start composed_end composer workTitle movementNumber
corpus
debussy_pour_le_piano l095-01_pour_prelude {1: '3/4'} {1: 0} 163 163 536.12 163 163 536.12 1882.87 3349 1965 0 0 0 1901 1901 Claude Debussy NaN

Compute chronological order

chronological_order = chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, CORPUS_COLOR_SCALE))
chronological_order
['debussy_pour_le_piano']
all_notes = dataset.data.get_all_parsed('notes', force=True, flat=True)
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
8808 notes over 3 files.
mc mn quarterbeats duration_qb mc_onset mn_onset timesig staff voice duration nominal_duration scalar tied tpc midi name octave chord_id gracenote
corpus piece i
debussy_pour_le_piano l095-01_pour_prelude 0 1 1 0 0.25 0 0 3/4 1 1 1/16 1/16 1 <NA> 3 57 A3 3 0 <NA>
1 1 1 0 1.00 0 0 3/4 2 1 1/4 1/4 1 <NA> 3 57 A3 3 12 <NA>
2 1 1 1/4 0.25 1/16 1/16 3/4 1 1 1/16 1/16 1 <NA> 0 60 C4 4 1 <NA>
3 1 1 1/2 0.25 1/8 1/8 3/4 1 1 1/16 1/16 1 <NA> 4 64 E4 4 2 <NA>
4 1 1 3/4 0.25 3/16 3/16 3/4 1 1 1/16 1/16 1 <NA> 0 60 C4 4 3 <NA>
def weight_notes(nl, group_col='midi', precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)
    
def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch]*count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {corp: get_corpus_display_name(corp) for corp in chronological_order}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {corpus_names[corp]: color for corp, color in corpus_colors.items()}
all_notes['corpus_name'] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby('corpus_name')
weighted_midi = pd.concat([weight_notes(nl, 'midi', precise=False) for _, nl in grouped_notes], keys=grouped_notes.groups.keys()).reset_index(level=0)
weighted_midi.columns = ['dataset', 'midi']
weighted_midi
dataset midi
0 Debussy Pour Le Piano 21
1 Debussy Pour Le Piano 24
2 Debussy Pour Le Piano 24
3 Debussy Pour Le Piano 24
4 Debussy Pour Le Piano 24
... ... ...
9742 Debussy Pour Le Piano 92
9743 Debussy Pour Le Piano 92
9744 Debussy Pour Le Piano 92
9745 Debussy Pour Le Piano 92
9746 Debussy Pour Le Piano 93

9747 rows × 2 columns

yaxis=dict(tickmode= 'array',
           tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
           ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
           gridcolor='lightgrey',
           )
fig = px.violin(weighted_midi, 
                x='dataset', 
                y='midi', 
                color='dataset', 
                box=True,
                labels=dict(
                    dataset='',
                    midi='distribution of pitches by duration'
                ),
                category_orders=dict(dataset=chronological_corpus_names),
                color_discrete_map=corpus_name_colors,
                width=1000, height=600,
               )
fig.update_traces(spanmode='hard') # do not extend beyond outliers
fig.update_layout(yaxis=yaxis, 
                  **STD_LAYOUT,
                 showlegend=False)
fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat([weight_notes(nl, 'tpc') for _, nl in grouped_notes], keys=grouped_notes.groups.keys()).reset_index(level=0)
weighted_tpc.columns = ['dataset', 'tpc']
weighted_tpc
dataset tpc
0 Debussy Pour Le Piano -7
1 Debussy Pour Le Piano -7
2 Debussy Pour Le Piano -7
3 Debussy Pour Le Piano -7
4 Debussy Pour Le Piano -6
... ... ...
2433 Debussy Pour Le Piano 15
2434 Debussy Pour Le Piano 17
2435 Debussy Pour Le Piano 17
2436 Debussy Pour Le Piano 17
2437 Debussy Pour Le Piano 17

2438 rows × 2 columns

As violin plot#

yaxis=dict(
    tickmode= 'array',
    tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
    ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
    gridcolor='lightgrey',
    zerolinecolor='lightgrey',
    zeroline=True
           )
fig = px.violin(weighted_tpc, 
                x='dataset', 
                y='tpc', 
                color='dataset', 
                box=True,
                labels=dict(
                    dataset='',
                    tpc='distribution of tonal pitch classes by duration'
                ),
                category_orders=dict(dataset=chronological_corpus_names),
                color_discrete_map=corpus_name_colors,
                width=1000, 
                height=600,
               )
fig.update_traces(spanmode='hard') # do not extend beyond outliers
fig.update_layout(yaxis=yaxis, 
                  **STD_LAYOUT,
                 showlegend=False)
fig.show()

As bar plots#

bar_data = all_notes.groupby('tpc').duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max()+1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(bar_data, x='tpc', y='duration_qb',
             labels=dict(tpc='Named pitch class',
                             duration_qb='Duration in quarter notes'
                            ),
             color_discrete_sequence=CORPUS_COLOR_SCALE,
             width=1000, height=300,
             )
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_xaxes(gridcolor='lightgrey', zerolinecolor='grey', tickmode='array', 
                 tickvals=x_values, ticktext = x_names, dtick=1, ticks='outside', tickcolor='black', 
                 minor=dict(dtick=6, gridcolor='grey', showgrid=True),
                )
fig.show()
scatter_data = all_notes.groupby(['corpus_name', 'tpc']).duration_qb.sum().reset_index()
fig = px.bar(scatter_data, x='tpc', y='duration_qb', color='corpus_name', 
                 labels=dict(
                     duration_qb='duration',
                     tpc='named pitch class',
                 ),
                 category_orders=dict(dataset=chronological_corpus_names),
                 color_discrete_map=corpus_name_colors,
                 width=1000, height=500,
                )
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_xaxes(gridcolor='lightgrey', zerolinecolor='grey', tickmode='array', 
                 tickvals=x_values, ticktext = x_names, dtick=1, ticks='outside', tickcolor='black', 
                 minor=dict(dtick=6, gridcolor='grey', showgrid=True),
                )
fig.show()

As scatter plots#

fig = px.scatter(scatter_data, x='tpc', y='duration_qb', color='corpus_name', 
                 labels=dict(
                     duration_qb='duration',
                     tpc='named pitch class',
                 ),
                 category_orders=dict(dataset=chronological_corpus_names),
                 color_discrete_map=corpus_name_colors,
                 facet_col='corpus_name', facet_col_wrap=3, facet_col_spacing=0.03,
                 width=1000, height=1000,
                )
fig.update_traces(mode='lines+markers')
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**STD_LAYOUT, showlegend=False)
fig.update_xaxes(gridcolor='lightgrey', zerolinecolor='lightgrey', tickmode='array', tickvals= [-12, -6, 0, 6, 12, 18],
    ticktext = ["Dbb", "Gb", "C", "F#", "B#", "E##"], visible=True, )
fig.update_yaxes(gridcolor='lightgrey', zeroline=False, matches=None, showticklabels=True)
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1,5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1,5)].duration_qb.sum()
entire = no_accidental + with_accidental
f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = {no_accidental / entire}"
'Fraction of note duration without accidental of the entire durations: 2671.1852564102564 / 4871.958333333334 = 0.5482775248988355'

Notes and staves#

print("Distribution of notes over staves:")
value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 5076 0.576294
2 3732 0.423706