Overview#
This notebook gives a general overview of the features included in the dataset.
Show imports
%load_ext autoreload
%autoreload 2
import os
import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display
import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)
def make_output_path(
filename: str,
extension=None,
path=RESULTS_PATH,
) -> str:
return utils.make_output_path(filename=filename, extension=extension, path=path)
def save_figure_as(
fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
if formats is not None:
for fmt in formats:
plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
else:
plotting.write_image(fig, filename, directory, **kwargs)
Loading data
D = utils.get_dataset("debussy_piano", corpus_release="v0.9.1")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("The Claude Debussy Solo Piano Corpus version v0.9.1")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
---------------------------------------------------------------------------
HTTPError Traceback (most recent call last)
File ~/work/workflow_deployment/debussy_piano/tmp_corpus_docs/notebooks/utils.py:3604, in get_dataset.<locals>.download_if_missing(filename, filepath)
3603 url = f"https://github.com/DCMLab/{corpus_name}/{url_release_component}/{filename}"
-> 3604 urlretrieve(url, filepath)
3605 except HTTPError as e:
File /usr/lib/python3.12/urllib/request.py:240, in urlretrieve(url, filename, reporthook, data)
238 url_type, path = _splittype(url)
--> 240 with contextlib.closing(urlopen(url, data)) as fp:
241 headers = fp.info()
File /usr/lib/python3.12/urllib/request.py:215, in urlopen(url, data, timeout, cafile, capath, cadefault, context)
214 opener = _opener
--> 215 return opener.open(url, data, timeout)
File /usr/lib/python3.12/urllib/request.py:521, in OpenerDirector.open(self, fullurl, data, timeout)
520 meth = getattr(processor, meth_name)
--> 521 response = meth(req, response)
523 return response
File /usr/lib/python3.12/urllib/request.py:630, in HTTPErrorProcessor.http_response(self, request, response)
629 if not (200 <= code < 300):
--> 630 response = self.parent.error(
631 'http', request, response, code, msg, hdrs)
633 return response
File /usr/lib/python3.12/urllib/request.py:559, in OpenerDirector.error(self, proto, *args)
558 args = (dict, 'default', 'http_error_default') + orig_args
--> 559 return self._call_chain(*args)
File /usr/lib/python3.12/urllib/request.py:492, in OpenerDirector._call_chain(self, chain, kind, meth_name, *args)
491 func = getattr(handler, meth_name)
--> 492 result = func(*args)
493 if result is not None:
File /usr/lib/python3.12/urllib/request.py:639, in HTTPDefaultErrorHandler.http_error_default(self, req, fp, code, msg, hdrs)
638 def http_error_default(self, req, fp, code, msg, hdrs):
--> 639 raise HTTPError(req.full_url, code, msg, hdrs, fp)
HTTPError: HTTP Error 404: Not Found
The above exception was the direct cause of the following exception:
RuntimeError Traceback (most recent call last)
Cell In[3], line 1
----> 1 D = utils.get_dataset("debussy_piano", corpus_release="v0.9.1")
2 package = D.inputs.get_package()
3 package_info = package._package.custom
File ~/work/workflow_deployment/debussy_piano/tmp_corpus_docs/notebooks/utils.py:3617, in get_dataset(corpus_name, target_dir, corpus_release)
3613 zip_name, json_name = f"{corpus_name}.zip", f"{corpus_name}.datapackage.json"
3614 zip_path, json_path = os.path.join(target_dir, zip_name), os.path.join(
3615 target_dir, json_name
3616 )
-> 3617 download_if_missing(zip_name, zip_path)
3618 download_if_missing(json_name, json_path)
3619 return dc.Dataset.from_package(json_path)
File ~/work/workflow_deployment/debussy_piano/tmp_corpus_docs/notebooks/utils.py:3606, in get_dataset.<locals>.download_if_missing(filename, filepath)
3604 urlretrieve(url, filepath)
3605 except HTTPError as e:
-> 3606 raise RuntimeError(
3607 f"Retrieving {corpus_name!r}@{corpus_release!r} from {url!r} failed: {e}"
3608 ) from e
3609 assert os.path.exists(
3610 filepath
3611 ), f"An error occured and {filepath} is not available."
RuntimeError: Retrieving 'debussy_piano'@'v0.9.1' from 'https://github.com/DCMLab/debussy_piano/releases/download/v0.9.1/debussy_piano.zip' failed: HTTP Error 404: Not Found
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years
Composition dates#
This section relies on the dataset’s metadata.
valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)
Mean composition years per corpus#
def make_summary(metadata_df):
piece_is_annotated = metadata_df.label_count > 0
return metadata_df[piece_is_annotated].copy()
Show source
summary = make_summary(all_metadata)
bar_data = pd.concat(
[
mean_composition_years.rename("year"),
summary.groupby(level="corpus").size().rename("pieces"),
],
axis=1,
).reset_index()
N = len(summary)
fig = px.bar(
bar_data,
x="year",
y="pieces",
color="corpus",
color_discrete_map=corpus_colors,
title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary
Composition years histogram#
Show source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
hist_data,
x="composed_end",
color="corpus",
labels=dict(
composed_end="decade",
count="pieces",
),
color_discrete_map=corpus_name_colors,
title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()
Dimensions#
Overview#
def make_overview_table(groupby, group_name="pieces"):
n_groups = groupby.size().rename(group_name)
absolute_numbers = dict(
measures=groupby.last_mn.sum(),
length=groupby.length_qb.sum(),
notes=groupby.n_onsets.sum(),
labels=groupby.label_count.sum(),
)
absolute = pd.DataFrame.from_dict(absolute_numbers)
absolute = pd.concat([n_groups, absolute], axis=1)
sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
absolute = pd.concat([absolute, sum_row])
return absolute
absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
def summarize_dataset(D):
all_metadata = D.get_metadata()
summary = make_summary(all_metadata)
return make_overview_table(summary.groupby(level=0))
corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())
Measures#
all_measures = D.get_feature("measures")
print(
f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
all_measures.get_default_analysis().plot_grouped()
Harmony labels#
All symbols, independent of the local key (the mode of which changes their semantics).
try:
all_annotations = D.get_feature("harmonylabels").df
except Exception:
all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
display(all_annotations.head())
print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
no_chord = all_annotations.root.isna()
if no_chord.sum() > 0:
print(
f"{no_chord.sum()} of them are not chords. Their values are:"
f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
)
all_chords = all_annotations[~no_chord].copy()
print(
f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
f"{len(all_chords.groupby(level=[0,1]))} documents."
)
all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
utils.get_corpus_display_name
)
all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
utils.get_corpus_display_name
)
else:
print("Dataset contains no annotations.")