Notes#

Hide imports
import os
from collections import defaultdict, Counter

from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

from utils import STD_LAYOUT, CADENCE_COLORS, CORPUS_COLOR_SCALE, chronological_corpus_order, color_background, get_corpus_display_name, get_repo_name, resolve_dir, value_count_df, get_repo_name, print_heading, resolve_dir
Hide source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
ANNOTATED_ONLY = os.getenv("ANNOTATED_ONLY", "True").lower() in ('true', '1', 't')
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
print(f"ANNOTATED_ONLY: {ANNOTATED_ONLY}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------

CORPUS_PATH: '/home/runner/work/workflow_deployment/debussy_other_piano_pieces'
ANNOTATED_ONLY: False
Hide source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------

Data repo 'debussy_other_piano_pieces' @ b9f4240
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
[default|all]
All corpora
-----------
View: This view is called 'default'. It 
	- excludes pieces that are not contained in the metadata,
	- filters out file extensions requiring conversion (such as .xml), and
	- excludes review files and folders.

                                has   active   scores measures           notes       
                           metadata     view detected detected parsed detected parsed
corpus                                                                               
debussy_other_piano_pieces      yes  default       19       19     19       19     19
N = 19 annotated pieces, 38 parsed dataframes.

Metadata#

all_metadata = dataset.data.metadata()
print(f"Concatenated 'metadata.tsv' files cover {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_metadata.reset_index(level=1).groupby(level=0).nth(0).iloc[:,:20]
Concatenated 'metadata.tsv' files cover 19 of the 19 scores.
piece TimeSig KeySig last_mc last_mn length_qb last_mc_unfolded last_mn_unfolded length_qb_unfolded all_notes_qb n_onsets n_onset_positions guitar_chord_count form_label_count label_count composed_start composed_end composer workTitle movementNumber
corpus
debussy_other_piano_pieces l000_etude {1: '4/4'} {1: -4, 7: 0, 9: -5, 38: 0, 42: -4, 48: -3, 57... 73 71 284.0 73 71 284.0 959.25 2473 1901 0 0 0 1915 1915 Claude Debussy Etude Retrouve

Compute chronological order

chronological_order = chronological_corpus_order(all_metadata)
corpus_colors = dict(zip(chronological_order, CORPUS_COLOR_SCALE))
chronological_order
['debussy_other_piano_pieces']
all_notes = dataset.data.get_all_parsed('notes', force=True, flat=True)
print(f"{len(all_notes.index)} notes over {len(all_notes.groupby(level=[0,1]))} files.")
all_notes.head()
WARNING  ms3.Parse.debussy_other_piano_pieces -- /home/runner/.local/lib/python3.10/site-packages/ms3/corpus.py (line 1255) check_number_of_unparsed_scores():
	You have set force=True, which forces me to parse 19 scores iteratively. Next time, call _.parse() on me, so we can speed this up!
34518 notes over 19 files.
mc mn quarterbeats duration_qb mc_onset mn_onset timesig staff voice duration nominal_duration scalar tied tpc midi name octave chord_id gracenote tremolo
corpus piece i
debussy_other_piano_pieces l000_etude 0 1 1 0 0.166667 0 0 4/4 2 2 1/24 1/16 2/3 <NA> -4 32 Ab1 1 13 <NA> NaN
1 1 1 0 2.000000 0 0 4/4 2 1 1/2 1/2 1 1 -4 32 Ab1 1 0 <NA> NaN
2 1 1 1/6 0.166667 1/24 1/24 4/4 2 2 1/24 1/16 2/3 <NA> -3 39 Eb2 2 14 <NA> NaN
3 1 1 1/3 0.166667 1/12 1/12 4/4 2 2 1/24 1/16 2/3 <NA> -4 44 Ab2 2 15 <NA> NaN
4 1 1 1/2 0.166667 1/8 1/8 4/4 2 2 1/24 1/16 2/3 <NA> -2 46 Bb2 2 16 <NA> NaN
def weight_notes(nl, group_col='midi', precise=True):
    summed_durations = nl.groupby(group_col).duration_qb.sum()
    shortest_duration = summed_durations[summed_durations > 0].min()
    summed_durations /= shortest_duration # normalize such that the shortest duration results in 1 occurrence
    if not precise:
        # This simple trick reduces compute time but also precision:
        # The rationale is to have the smallest value be slightly larger than 0.5 because
        # if it was exactly 0.5 it would be rounded down by repeat_notes_according_to_weights()
        summed_durations /= 1.9999999
    return repeat_notes_according_to_weights(summed_durations)
    
def repeat_notes_according_to_weights(weights):
    try:
        counts = weights.round().astype(int)
    except Exception:
        return pd.Series(dtype=int)
    counts_reflecting_weights = []
    for pitch, count in counts.items():
        counts_reflecting_weights.extend([pitch]*count)
    return pd.Series(counts_reflecting_weights)

Ambitus#

corpus_names = {corp: get_corpus_display_name(corp) for corp in chronological_order}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {corpus_names[corp]: color for corp, color in corpus_colors.items()}
all_notes['corpus_name'] = all_notes.index.get_level_values(0).map(corpus_names)
grouped_notes = all_notes.groupby('corpus_name')
weighted_midi = pd.concat([weight_notes(nl, 'midi', precise=False) for _, nl in grouped_notes], keys=grouped_notes.groups.keys()).reset_index(level=0)
weighted_midi.columns = ['dataset', 'midi']
weighted_midi
dataset midi
0 Debussy Other Piano Pieces 22
1 Debussy Other Piano Pieces 24
2 Debussy Other Piano Pieces 24
3 Debussy Other Piano Pieces 25
4 Debussy Other Piano Pieces 25
... ... ...
6716 Debussy Other Piano Pieces 95
6717 Debussy Other Piano Pieces 95
6718 Debussy Other Piano Pieces 95
6719 Debussy Other Piano Pieces 96
6720 Debussy Other Piano Pieces 98

6721 rows × 2 columns

yaxis=dict(tickmode= 'array',
           tickvals= [12, 24, 36, 48, 60, 72, 84, 96],
           ticktext = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7"],
           gridcolor='lightgrey',
           )
fig = px.violin(weighted_midi, 
                x='dataset', 
                y='midi', 
                color='dataset', 
                box=True,
                labels=dict(
                    dataset='',
                    midi='distribution of pitches by duration'
                ),
                category_orders=dict(dataset=chronological_corpus_names),
                color_discrete_map=corpus_name_colors,
                width=1000, height=600,
               )
fig.update_traces(spanmode='hard') # do not extend beyond outliers
fig.update_layout(yaxis=yaxis, 
                  **STD_LAYOUT,
                 showlegend=False)
fig.show()

Tonal Pitch Classes (TPC)#

weighted_tpc = pd.concat([weight_notes(nl, 'tpc') for _, nl in grouped_notes], keys=grouped_notes.groups.keys()).reset_index(level=0)
weighted_tpc.columns = ['dataset', 'tpc']
weighted_tpc
dataset tpc
0 Debussy Other Piano Pieces -10
1 Debussy Other Piano Pieces -10
2 Debussy Other Piano Pieces -10
3 Debussy Other Piano Pieces -10
4 Debussy Other Piano Pieces -10
... ... ...
4388 Debussy Other Piano Pieces 13
4389 Debussy Other Piano Pieces 14
4390 Debussy Other Piano Pieces 14
4391 Debussy Other Piano Pieces 14
4392 Debussy Other Piano Pieces 15

4393 rows × 2 columns

As violin plot#

yaxis=dict(
    tickmode= 'array',
    tickvals= [-12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18],
    ticktext = ["Dbb", "Bbb", "Gb", "Eb", "C", "A", "F#", "D#", "B#", "G##", "E##"],
    gridcolor='lightgrey',
    zerolinecolor='lightgrey',
    zeroline=True
           )
fig = px.violin(weighted_tpc, 
                x='dataset', 
                y='tpc', 
                color='dataset', 
                box=True,
                labels=dict(
                    dataset='',
                    tpc='distribution of tonal pitch classes by duration'
                ),
                category_orders=dict(dataset=chronological_corpus_names),
                color_discrete_map=corpus_name_colors,
                width=1000, 
                height=600,
               )
fig.update_traces(spanmode='hard') # do not extend beyond outliers
fig.update_layout(yaxis=yaxis, 
                  **STD_LAYOUT,
                 showlegend=False)
fig.show()

As bar plots#

bar_data = all_notes.groupby('tpc').duration_qb.sum().reset_index()
x_values = list(range(bar_data.tpc.min(), bar_data.tpc.max()+1))
x_names = ms3.fifths2name(x_values)
fig = px.bar(bar_data, x='tpc', y='duration_qb',
             labels=dict(tpc='Named pitch class',
                             duration_qb='Duration in quarter notes'
                            ),
             color_discrete_sequence=CORPUS_COLOR_SCALE,
             width=1000, height=300,
             )
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_xaxes(gridcolor='lightgrey', zerolinecolor='grey', tickmode='array', 
                 tickvals=x_values, ticktext = x_names, dtick=1, ticks='outside', tickcolor='black', 
                 minor=dict(dtick=6, gridcolor='grey', showgrid=True),
                )
fig.show()
scatter_data = all_notes.groupby(['corpus_name', 'tpc']).duration_qb.sum().reset_index()
fig = px.bar(scatter_data, x='tpc', y='duration_qb', color='corpus_name', 
                 labels=dict(
                     duration_qb='duration',
                     tpc='named pitch class',
                 ),
                 category_orders=dict(dataset=chronological_corpus_names),
                 color_discrete_map=corpus_name_colors,
                 width=1000, height=500,
                )
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_xaxes(gridcolor='lightgrey', zerolinecolor='grey', tickmode='array', 
                 tickvals=x_values, ticktext = x_names, dtick=1, ticks='outside', tickcolor='black', 
                 minor=dict(dtick=6, gridcolor='grey', showgrid=True),
                )
fig.show()

As scatter plots#

fig = px.scatter(scatter_data, x='tpc', y='duration_qb', color='corpus_name', 
                 labels=dict(
                     duration_qb='duration',
                     tpc='named pitch class',
                 ),
                 category_orders=dict(dataset=chronological_corpus_names),
                 color_discrete_map=corpus_name_colors,
                 facet_col='corpus_name', facet_col_wrap=3, facet_col_spacing=0.03,
                 width=1000, height=1000,
                )
fig.update_traces(mode='lines+markers')
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
fig.update_layout(**STD_LAYOUT, showlegend=False)
fig.update_xaxes(gridcolor='lightgrey', zerolinecolor='lightgrey', tickmode='array', tickvals= [-12, -6, 0, 6, 12, 18],
    ticktext = ["Dbb", "Gb", "C", "F#", "B#", "E##"], visible=True, )
fig.update_yaxes(gridcolor='lightgrey', zeroline=False, matches=None, showticklabels=True)
fig.show()
no_accidental = bar_data[bar_data.tpc.between(-1,5)].duration_qb.sum()
with_accidental = bar_data[~bar_data.tpc.between(-1,5)].duration_qb.sum()
entire = no_accidental + with_accidental
f"Fraction of note duration without accidental of the entire durations: {no_accidental} / {entire} = {no_accidental / entire}"
'Fraction of note duration without accidental of the entire durations: 14809.703349673204 / 26899.229166666668 = 0.5505623695724814'

Notes and staves#

print("Distribution of notes over staves:")
value_count_df(all_notes.staff)
Distribution of notes over staves:
counts %
staff
1 19716 0.57118
2 14006 0.405759
3 796 0.02306