Overview#

This notebook gives a general overview of the features included in the dataset.

Hide imports
import os
from collections import defaultdict, Counter
from fractions import Fraction

from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

from utils import CADENCE_COLORS, CORPUS_COLOR_SCALE, STD_LAYOUT, TYPE_COLORS, color_background, corpus_mean_composition_years, value_count_df, get_corpus_display_name, get_repo_name, print_heading, resolve_dir
Hide source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
ANNOTATED_ONLY = os.getenv("ANNOTATED_ONLY", "True").lower() in ('true', '1', 't')
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
print(f"ANNOTATED_ONLY: {ANNOTATED_ONLY}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------

CORPUS_PATH: '/home/runner/work/workflow_deployment/debussy_images'
ANNOTATED_ONLY: False
Hide source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------

Data repo 'debussy_images' @ 4f1c443
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
[default|all]
All corpora
-----------
View: This view is called 'default'. It 
	- excludes pieces that are not contained in the metadata,
	- filters out file extensions requiring conversion (such as .xml), and
	- excludes review files and folders.

                    has   active   scores measures           notes       
               metadata     view detected detected parsed detected parsed
corpus                                                                   
debussy_images      yes  default        9        9      9        9      9
N = 9 annotated pieces, 18 parsed dataframes.
Hide data loading
all_metadata = dataset.data.metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
print(f"Metadata covers {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_notes = dataset.get_facet('notes')
all_measures = dataset.get_facet('measures')
mean_composition_years = corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, CORPUS_COLOR_SCALE))
corpus_names = {corp: get_corpus_display_name(corp) for corp in chronological_order}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {corpus_names[corp]: color for corp, color in corpus_colors.items()}
Metadata covers 9 of the 9 scores.

Composition dates#

This section relies on the dataset’s metadata.

valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors='coerce')
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors='coerce')
print(f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
      f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}.")
Composition dates range from 1894 ('debussy_images', 'l087-01_images_lent') to 1907 ('debussy_images', 'l111-01_images_cloches').

Mean composition years per corpus#

Hide source
summary = all_metadata.copy()
summary.length_qb = all_measures.groupby(level=[0,1]).act_dur.sum() * 4.0
summary = pd.concat([summary,
                     all_notes.groupby(level=[0,1]).size().rename('notes'),
                    ], axis=1)
bar_data = pd.concat([mean_composition_years.rename('year'), 
                      summary.groupby(level='corpus').size().rename('pieces')],
                     axis=1
                    ).reset_index()
fig = px.bar(bar_data, x='year', y='pieces', color='corpus',
             color_discrete_map=corpus_colors,
            )
fig.update_traces(width=5)
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_traces(width=5)

Composition years histogram#

Hide source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(hist_data, x='composed_end', color='corpus',
                   labels=dict(composed_end='decade',
                               count='pieces',
                              ),
                   color_discrete_map=corpus_name_colors,
                  )
fig.update_traces(xbins=dict(
    size=10
))
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.show()

Dimensions#

Overview#

Hide source
corpus_metadata = summary.groupby(level=0)
n_pieces = corpus_metadata.size().rename('pieces')
absolute_numbers = dict(
    measures = corpus_metadata.last_mn.sum(),
    length = corpus_metadata.length_qb.sum(),
    notes = corpus_metadata.notes.sum(),
    labels = corpus_metadata.label_count.sum(),
)
absolute = pd.DataFrame.from_dict(absolute_numbers)
absolute = pd.concat([n_pieces, absolute], axis=1)
sum_row = pd.DataFrame(absolute.sum(), columns=['sum']).T
absolute = pd.concat([absolute, sum_row])
relative = absolute.div(n_pieces, axis=0)
complete_summary = pd.concat([absolute, relative, absolute.iloc[:1,2:].div(absolute.measures, axis=0)], axis=1, keys=['absolute', 'per piece', 'per measure'])
complete_summary = complete_summary.apply(pd.to_numeric).round(2)
complete_summary.index = complete_summary.index.map(dict(corpus_names, sum='sum'))
complete_summary
absolute per piece per measure
pieces measures length notes labels pieces measures length notes labels length notes labels
Debussy Images 9 866 2819.0 20685 0 1.0 96.22 313.22 2298.33 0.0 3.26 23.89 0.0
sum 9 866 2819.0 20685 0 NaN NaN NaN NaN NaN NaN NaN NaN

Measures#

print(f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files.")
all_measures.head()
876 measures over 9 files.
mc mn quarterbeats duration_qb keysig timesig act_dur mc_offset numbering_offset dont_count barline breaks repeats next
corpus fname interval
debussy_images l087-01_images_lent [0.0, 3.0) 1 1 0 3.0 3 3/4 3/4 0 <NA> <NA> <NA> <NA> firstMeasure (2,)
[3.0, 6.0) 2 2 3 3.0 3 3/4 3/4 0 <NA> <NA> <NA> <NA> <NA> (3,)
[6.0, 9.0) 3 3 6 3.0 3 3/4 3/4 0 <NA> <NA> <NA> line <NA> (4,)
[9.0, 12.0) 4 4 9 3.0 3 3/4 3/4 0 <NA> <NA> <NA> <NA> <NA> (5,)
[12.0, 15.0) 5 5 12 3.0 3 3/4 3/4 0 <NA> <NA> <NA> <NA> <NA> (6,)
print("Distribution of time signatures per XML measure (MC):")
all_measures.timesig.value_counts(dropna=False)
Distribution of time signatures per XML measure (MC):
3/4     235
2/4     181
4/4     161
6/8      96
4/8      94
3/2      73
12/8     17
6/4      15
3/8       1
4/2       1
1/2       1
2/2       1
Name: timesig, dtype: int64

Harmony labels#

All symbols, independent of the local key (the mode of which changes their semantics).

try:
    all_annotations = dataset.get_facet('expanded')
except Exception:
    all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
    display(all_annotations.head())
    print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
    no_chord = all_annotations.root.isna()
    if no_chord.sum() > 0:
        print(f"{no_chord.sum()} of them are not chords. Their values are: {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}")
    all_chords = all_annotations[~no_chord].copy()
    print(f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over {len(all_chords.groupby(level=[0,1]))} documents.")
    all_annotations['corpus_name'] = all_annotations.index.get_level_values(0).map(get_corpus_display_name)
    all_chords['corpus_name'] = all_chords.index.get_level_values(0).map(get_corpus_display_name)
else:
    print(f"Dataset contains no annotations.")
Dataset contains no annotations.