Overview#
This notebook gives a general overview of the features included in the dataset.
Show imports
%load_ext autoreload
%autoreload 2
import os
import dimcat as dc
import pandas as pd
import plotly.express as px
from dimcat import filters, plotting
from IPython.display import display
import utils
RESULTS_PATH = os.path.abspath(os.path.join(utils.OUTPUT_FOLDER, "overview"))
os.makedirs(RESULTS_PATH, exist_ok=True)
def make_output_path(
filename: str,
extension=None,
path=RESULTS_PATH,
) -> str:
return utils.make_output_path(filename=filename, extension=extension, path=path)
def save_figure_as(
fig, filename, formats=("png", "pdf"), directory=RESULTS_PATH, **kwargs
):
if formats is not None:
for fmt in formats:
plotting.write_image(fig, filename, directory, format=fmt, **kwargs)
else:
plotting.write_image(fig, filename, directory, **kwargs)
Loading data
D = utils.get_dataset("cpe_bach_keyboard", corpus_release="v2.2")
package = D.inputs.get_package()
package_info = package._package.custom
git_tag = package_info.get("git_tag")
utils.print_heading("Data and software versions")
print("Carl Philipp Emanuel Bach – Works for Keyboard version v2.2")
print(f"Datapackage '{package.package_name}' @ {git_tag}")
print(f"dimcat version {dc.__version__}\n")
D
Data and software versions
--------------------------
Carl Philipp Emanuel Bach – Works for Keyboard version v2.2
Datapackage 'cpe_bach_keyboard' @ v2.2
dimcat version 3.4.0
Dataset
=======
{'inputs': {'basepath': None,
'packages': {'cpe_bach_keyboard': ["'cpe_bach_keyboard.measures' (MuseScoreFacetName.MuseScoreMeasures)",
"'cpe_bach_keyboard.notes' (MuseScoreFacetName.MuseScoreNotes)",
"'cpe_bach_keyboard.expanded' (MuseScoreFacetName.MuseScoreHarmonies)",
"'cpe_bach_keyboard.chords' (MuseScoreFacetName.MuseScoreChords)",
"'cpe_bach_keyboard.metadata' (FeatureName.Metadata)"]}},
'outputs': {'basepath': None, 'packages': {}},
'pipeline': []}
filtered_D = filters.HasHarmonyLabelsFilter(keep_values=[True]).process(D)
all_metadata = filtered_D.get_metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
all_metadata
| TimeSig | KeySig | last_mc | last_mn | length_qb | last_mc_unfolded | last_mn_unfolded | length_qb_unfolded | volta_mcs | all_notes_qb | ... | musicbrainz | originalFormat | typesetter | viaf | P86 (composer) | staff_1_instrument | staff_1_ambitus | staff_2_instrument | staff_2_ambitus | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| corpus | piece | |||||||||||||||||||||
| cpe_bach_keyboard | wq112n02 | {1: '3/4'} | {1: 2} | 19 | 19 | 57.0 | 19 | 19 | 57.0 | () | 160.50 | ... | https://musicbrainz.org/work/4df7f68e-2f71-42e... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | https://viaf.org/viaf/292645495 | Q76428 | Harpsichord | 50-88 (D3-E6) | Harpsichord | 35-66 (B1-F#4) |
| wq112n08 | {1: '4/4'} | {1: -2} | 12 | 12 | 48.0 | 12 | 12 | 48.0 | () | 110.38 | ... | https://musicbrainz.org/work/715cb245-20aa-452... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | https://viaf.org/viaf/293044251 | Q76429 | Harpsichord | 57-87 (A3-Eb6) | Harpsichord | 34-65 (Bb1-F4) | |
| wq112n15 | {1: '4/4'} | {1: -1} | 13 | 13 | 61.0 | 13 | 13 | 61.0 | () | 366.75 | ... | https://musicbrainz.org/work/2fa9c40d-556b-4a6... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | <NA> | Q76430 | Harpsichord | 53-81 (F3-A5) | Harpsichord | 36-65 (C2-F4) | |
| wq113n03 | {1: '4/4'} | {1: -1} | 7 | 7 | 28.0 | 7 | 7 | 28.0 | () | 50.00 | ... | https://musicbrainz.org/work/a3421fbb-f998-4f4... | mxl | https://imslp.org/wiki/Special:ReverseLookup/9... | Anna Yuferova | https://viaf.org/viaf/294403473 | Q76431 | Harpsichord | 52-88 (E3-E6) | Harpsichord | 38-62 (D2-D4) | |
| wq114n07 | {1: '4/4'} | {1: -1} | 4 | 4 | 54.0 | 4 | 4 | 54.0 | () | 393.25 | ... | https://musicbrainz.org/work/41c296c8-6c35-4f2... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | https://viaf.org/viaf/1388165272164710690001 | Q76432 | Harpsichord | 56-86 (G#3-D6) | Harpsichord | 38-62 (D2-D4) | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | |
| wq57n04c | {1: '2/4'} | {1: -1} | 52 | 52 | 104.0 | 104 | 104 | 208.0 | () | 238.75 | ... | https://musicbrainz.org/work/9ed3bac3-5e4b-4b6... | mxl | https://imslp.org/wiki/Special:ReverseLookup/2... | Anna Yuferova | https://viaf.org/viaf/2725165271416210690003 | Q76489 | Harpsichord | 56-89 (G#3-F6) | Harpsichord | 38-67 (D2-G4) | |
| wq57n05 | {1: '2/4'} | {1: -1} | 224 | 224 | 448.0 | 224 | 224 | 448.0 | () | 933.25 | ... | https://musicbrainz.org/work/ab4979b1-205e-471... | mxl | https://imslp.org/wiki/Special:ReverseLookup/9... | Anna Yuferova | https://viaf.org/viaf/595165271274110690002 | Q76490 | Harpsichord | 46-89 (Bb2-F6) | Harpsichord | 31-67 (G1-G4) | |
| wq57n06a | {1: '4/4'} | {1: -4} | 92 | 90 | 368.0 | 180 | 180 | 720.0 | (34], [35]], [[91], [92) | 741.33 | ... | https://musicbrainz.org/work/22b8fdea-d7dc-4de... | mxl | https://imslp.org/wiki/Special:ReverseLookup/5... | Anna Yuferova | https://viaf.org/viaf/9293165272355810690008 | Q76491 | Harpsichord | 44-89 (Ab2-F6) | Harpsichord | 34-65 (Bb1-F4) | |
| wq57n06b | {1: '4/4'} | {1: -1} | 44 | 44 | 176.0 | 44 | 44 | 176.0 | () | 432.12 | ... | https://musicbrainz.org/work/74e15639-2300-44e... | mxl | https://imslp.org/wiki/Special:ReverseLookup/5... | Anna Yuferova | https://viaf.org/viaf/9293165272355810690008 | Q76492 | Harpsichord | 50-87 (D3-Eb6) | Harpsichord | 34-67 (Bb1-G4) | |
| wq57n06c | {1: '2/4'} | {1: -4} | 72 | 70 | 144.0 | 140 | 140 | 280.0 | (36], [37]], [[71], [72) | 381.62 | ... | https://musicbrainz.org/work/0af2ab1e-5c48-4a1... | mxl | https://imslp.org/wiki/Special:ReverseLookup/5... | Anna Yuferova | https://viaf.org/viaf/9293165272355810690008 | Q76493 | Harpsichord | 51-89 (Eb3-F6) | Harpsichord | 32-65 (Ab1-F4) |
66 rows × 57 columns
mean_composition_years = utils.corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, utils.CORPUS_COLOR_SCALE))
corpus_names = {
corp: utils.get_corpus_display_name(corp) for corp in chronological_order
}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {
corpus_names[corp]: color for corp, color in corpus_colors.items()
}
mean_composition_years
corpus
cpe_bach_keyboard 1766.787879
Name: mean_composition_year, dtype: float64
Composition dates#
This section relies on the dataset’s metadata.
valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors="coerce")
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors="coerce")
print(
f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}."
)
Composition dates range from 1754 ('cpe_bach_keyboard', 'wq119n07') to 1780 ('cpe_bach_keyboard', 'wq56n04a').
Mean composition years per corpus#
def make_summary(metadata_df):
piece_is_annotated = metadata_df.label_count > 0
return metadata_df[piece_is_annotated].copy()
Show source
summary = make_summary(all_metadata)
bar_data = pd.concat(
[
mean_composition_years.rename("year"),
summary.groupby(level="corpus").size().rename("pieces"),
],
axis=1,
).reset_index()
N = len(summary)
fig = px.bar(
bar_data,
x="year",
y="pieces",
color="corpus",
color_discrete_map=corpus_colors,
title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(width=5)
fig.update_layout(**utils.STD_LAYOUT)
fig.update_traces(width=5)
save_figure_as(fig, "pieces_timeline_bars")
fig.show()
summary
| TimeSig | KeySig | last_mc | last_mn | length_qb | last_mc_unfolded | last_mn_unfolded | length_qb_unfolded | volta_mcs | all_notes_qb | ... | musicbrainz | originalFormat | typesetter | viaf | P86 (composer) | staff_1_instrument | staff_1_ambitus | staff_2_instrument | staff_2_ambitus | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| corpus | piece | |||||||||||||||||||||
| cpe_bach_keyboard | wq112n02 | {1: '3/4'} | {1: 2} | 19 | 19 | 57.0 | 19 | 19 | 57.0 | () | 160.50 | ... | https://musicbrainz.org/work/4df7f68e-2f71-42e... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | https://viaf.org/viaf/292645495 | Q76428 | Harpsichord | 50-88 (D3-E6) | Harpsichord | 35-66 (B1-F#4) |
| wq112n08 | {1: '4/4'} | {1: -2} | 12 | 12 | 48.0 | 12 | 12 | 48.0 | () | 110.38 | ... | https://musicbrainz.org/work/715cb245-20aa-452... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | https://viaf.org/viaf/293044251 | Q76429 | Harpsichord | 57-87 (A3-Eb6) | Harpsichord | 34-65 (Bb1-F4) | |
| wq112n15 | {1: '4/4'} | {1: -1} | 13 | 13 | 61.0 | 13 | 13 | 61.0 | () | 366.75 | ... | https://musicbrainz.org/work/2fa9c40d-556b-4a6... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | <NA> | Q76430 | Harpsichord | 53-81 (F3-A5) | Harpsichord | 36-65 (C2-F4) | |
| wq113n03 | {1: '4/4'} | {1: -1} | 7 | 7 | 28.0 | 7 | 7 | 28.0 | () | 50.00 | ... | https://musicbrainz.org/work/a3421fbb-f998-4f4... | mxl | https://imslp.org/wiki/Special:ReverseLookup/9... | Anna Yuferova | https://viaf.org/viaf/294403473 | Q76431 | Harpsichord | 52-88 (E3-E6) | Harpsichord | 38-62 (D2-D4) | |
| wq114n07 | {1: '4/4'} | {1: -1} | 4 | 4 | 54.0 | 4 | 4 | 54.0 | () | 393.25 | ... | https://musicbrainz.org/work/41c296c8-6c35-4f2... | mxl | https://imslp.org/wiki/Special:ReverseLookup/3... | Anna Yuferova | https://viaf.org/viaf/1388165272164710690001 | Q76432 | Harpsichord | 56-86 (G#3-D6) | Harpsichord | 38-62 (D2-D4) | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | |
| wq57n04c | {1: '2/4'} | {1: -1} | 52 | 52 | 104.0 | 104 | 104 | 208.0 | () | 238.75 | ... | https://musicbrainz.org/work/9ed3bac3-5e4b-4b6... | mxl | https://imslp.org/wiki/Special:ReverseLookup/2... | Anna Yuferova | https://viaf.org/viaf/2725165271416210690003 | Q76489 | Harpsichord | 56-89 (G#3-F6) | Harpsichord | 38-67 (D2-G4) | |
| wq57n05 | {1: '2/4'} | {1: -1} | 224 | 224 | 448.0 | 224 | 224 | 448.0 | () | 933.25 | ... | https://musicbrainz.org/work/ab4979b1-205e-471... | mxl | https://imslp.org/wiki/Special:ReverseLookup/9... | Anna Yuferova | https://viaf.org/viaf/595165271274110690002 | Q76490 | Harpsichord | 46-89 (Bb2-F6) | Harpsichord | 31-67 (G1-G4) | |
| wq57n06a | {1: '4/4'} | {1: -4} | 92 | 90 | 368.0 | 180 | 180 | 720.0 | (34], [35]], [[91], [92) | 741.33 | ... | https://musicbrainz.org/work/22b8fdea-d7dc-4de... | mxl | https://imslp.org/wiki/Special:ReverseLookup/5... | Anna Yuferova | https://viaf.org/viaf/9293165272355810690008 | Q76491 | Harpsichord | 44-89 (Ab2-F6) | Harpsichord | 34-65 (Bb1-F4) | |
| wq57n06b | {1: '4/4'} | {1: -1} | 44 | 44 | 176.0 | 44 | 44 | 176.0 | () | 432.12 | ... | https://musicbrainz.org/work/74e15639-2300-44e... | mxl | https://imslp.org/wiki/Special:ReverseLookup/5... | Anna Yuferova | https://viaf.org/viaf/9293165272355810690008 | Q76492 | Harpsichord | 50-87 (D3-Eb6) | Harpsichord | 34-67 (Bb1-G4) | |
| wq57n06c | {1: '2/4'} | {1: -4} | 72 | 70 | 144.0 | 140 | 140 | 280.0 | (36], [37]], [[71], [72) | 381.62 | ... | https://musicbrainz.org/work/0af2ab1e-5c48-4a1... | mxl | https://imslp.org/wiki/Special:ReverseLookup/5... | Anna Yuferova | https://viaf.org/viaf/9293165272355810690008 | Q76493 | Harpsichord | 51-89 (Eb3-F6) | Harpsichord | 32-65 (Ab1-F4) |
66 rows × 57 columns
Composition years histogram#
Show source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(
hist_data,
x="composed_end",
color="corpus",
labels=dict(
composed_end="decade",
count="pieces",
),
color_discrete_map=corpus_name_colors,
title=f"Temporal coverage of the {N} annotated pieces in the Distant Listening Corpus",
)
fig.update_traces(xbins=dict(size=10))
fig.update_layout(**utils.STD_LAYOUT)
fig.update_legends(font=dict(size=16))
save_figure_as(fig, "pieces_timeline_histogram", height=1250)
fig.show()
Dimensions#
Overview#
def make_overview_table(groupby, group_name="pieces"):
n_groups = groupby.size().rename(group_name)
absolute_numbers = dict(
measures=groupby.last_mn.sum(),
length=groupby.length_qb.sum(),
notes=groupby.n_onsets.sum(),
labels=groupby.label_count.sum(),
)
absolute = pd.DataFrame.from_dict(absolute_numbers)
absolute = pd.concat([n_groups, absolute], axis=1)
sum_row = pd.DataFrame(absolute.sum(), columns=["sum"]).T
absolute = pd.concat([absolute, sum_row])
return absolute
absolute = make_overview_table(summary.groupby("workTitle"))
# print(absolute.astype(int).to_markdown())
absolute.astype(int)
| pieces | measures | length | notes | labels | |
|---|---|---|---|---|---|
| Fantasia and Fugue in C Minor | 1 | 123 | 530 | 1979 | 340 |
| Fantasia in B-flat Major | 1 | 12 | 48 | 244 | 56 |
| Fantasia in D Major | 2 | 45 | 169 | 647 | 74 |
| Fantasia in D Minor | 3 | 25 | 138 | 685 | 95 |
| Fantasia in F Major | 1 | 13 | 61 | 231 | 28 |
| Fantasia in G Major | 1 | 14 | 56 | 252 | 35 |
| Fantasia in G Minor | 1 | 3 | 170 | 731 | 86 |
| Rondo in A Minor | 1 | 172 | 346 | 2222 | 308 |
| Rondo in C Major | 1 | 176 | 529 | 2662 | 435 |
| Rondo in D Major | 1 | 149 | 486 | 1972 | 425 |
| Rondo in E Major | 1 | 94 | 409 | 2529 | 557 |
| Rondo in F Major | 1 | 224 | 448 | 2074 | 366 |
| Rondo in G Major | 1 | 141 | 282 | 1563 | 283 |
| Sonata in A Major | 5 | 388 | 1149 | 5823 | 874 |
| Sonata in A Minor | 6 | 464 | 1318 | 5247 | 856 |
| Sonata in B Minor | 3 | 135 | 258 | 1373 | 277 |
| Sonata in B-flat Major | 3 | 393 | 1193 | 4667 | 890 |
| Sonata in C Major | 3 | 152 | 418 | 1831 | 231 |
| Sonata in C Minor | 1 | 234 | 703 | 1903 | 450 |
| Sonata in D Minor | 6 | 510 | 1234 | 5754 | 1174 |
| Sonata in F Major | 11 | 741 | 1747 | 7949 | 1446 |
| Sonata in F Minor | 3 | 204 | 688 | 2894 | 402 |
| Sonata in G Major | 9 | 717 | 2004 | 8595 | 1503 |
| sum | 66 | 5129 | 14386 | 63827 | 11191 |
def summarize_dataset(D):
all_metadata = D.get_metadata()
summary = make_summary(all_metadata)
return make_overview_table(summary.groupby(level=0))
corpus_summary = summarize_dataset(D)
print(corpus_summary.astype(int).to_markdown())
| | pieces | measures | length | notes | labels |
|:------------------|---------:|-----------:|---------:|--------:|---------:|
| cpe_bach_keyboard | 66 | 5129 | 14386 | 63827 | 11191 |
| sum | 66 | 5129 | 14386 | 63827 | 11191 |
Measures#
all_measures = D.get_feature("measures")
print(
f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files."
)
all_measures.head()
5165 measures over 66 files.
| mc | mn | quarterbeats | duration_qb | keysig | timesig | act_dur | mc_offset | numbering_offset | dont_count | barline | breaks | repeats | next | volta | markers | jump_bwd | jump_fwd | play_until | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| corpus | piece | i | |||||||||||||||||||
| cpe_bach_keyboard | wq112n02 | 0 | 1 | 1 | 0 | 3.0 | 2 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | firstMeasure | (2,) | <NA> | <NA> | <NA> | <NA> | <NA> |
| 1 | 2 | 2 | 3 | 3.0 | 2 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (3,) | <NA> | <NA> | <NA> | <NA> | <NA> | ||
| 2 | 3 | 3 | 6 | 3.0 | 2 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (4,) | <NA> | <NA> | <NA> | <NA> | <NA> | ||
| 3 | 4 | 4 | 9 | 3.0 | 2 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (5,) | <NA> | <NA> | <NA> | <NA> | <NA> | ||
| 4 | 5 | 5 | 12 | 3.0 | 2 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (6,) | <NA> | <NA> | <NA> | <NA> | <NA> |
all_measures.get_default_analysis().plot_grouped()
Harmony labels#
All symbols, independent of the local key (the mode of which changes their semantics).
try:
all_annotations = D.get_feature("harmonylabels").df
except Exception:
all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
display(all_annotations.head())
print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
no_chord = all_annotations.root.isna()
if no_chord.sum() > 0:
print(
f"{no_chord.sum()} of them are not chords. Their values are:"
f" {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}"
)
all_chords = all_annotations[~no_chord].copy()
print(
f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over "
f"{len(all_chords.groupby(level=[0,1]))} documents."
)
all_annotations["corpus_name"] = all_annotations.index.get_level_values(0).map(
utils.get_corpus_display_name
)
all_chords["corpus_name"] = all_chords.index.get_level_values(0).map(
utils.get_corpus_display_name
)
else:
print("Dataset contains no annotations.")
| mc | mn | quarterbeats | duration_qb | mc_onset | mn_onset | timesig | staff | voice | volta | ... | numeral_or_applied_to_numeral | intervals_over_bass | intervals_over_root | scale_degrees | scale_degrees_and_mode | scale_degrees_major | scale_degrees_minor | globalkey | localkey | chord | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| corpus | piece | i | |||||||||||||||||||||
| cpe_bach_keyboard | wq112n02 | 0 | 1 | 1 | 0 | 1.0 | 0 | 0 | 3/4 | 2 | 1 | <NA> | ... | I | (M3, P5) | (M3, P5) | (1, 3, 5) | (1, 3, 5), major | (1, 3, 5) | (1, #3, 5) | D | I | I |
| 1 | 1 | 1 | 1 | 1.0 | 1/4 | 1/4 | 3/4 | 2 | 1 | <NA> | ... | ii | (M3, M6) | (m3, P5) | (4, 6, 2) | (4, 6, 2), major | (4, 6, 2) | (4, #6, 2) | D | I | ii6 | ||
| 2 | 1 | 1 | 2 | 1.0 | 1/2 | 1/2 | 3/4 | 2 | 1 | <NA> | ... | V | (M3, P5) | (M3, P5) | (5, 7, 2) | (5, 7, 2), major | (5, 7, 2) | (5, #7, 2) | D | I | V | ||
| 3 | 2 | 2 | 3 | 3.0 | 0 | 0 | 3/4 | 2 | 1 | <NA> | ... | I | (M3, P5) | (M3, P5) | (1, 3, 5) | (1, 3, 5), major | (1, 3, 5) | (1, #3, 5) | D | I | I | ||
| 4 | 3 | 3 | 6 | 1.0 | 0 | 0 | 3/4 | 2 | 1 | <NA> | ... | vi | (m3, P5) | (m3, P5) | (6, 1, 3) | (6, 1, 3), major | (6, 1, 3) | (#6, 1, #3) | D | I | i/vi |
5 rows × 52 columns
Concatenated annotation tables contains 10863 rows.
Dataset contains 10863 tokens and 698 types over 66 documents.