Overview#
This notebook gives a general overview of the features included in the dataset.
Show imports
import os
from collections import defaultdict, Counter
from fractions import Fraction
from git import Repo
import dimcat as dc
import ms3
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from utils import CADENCE_COLORS, CORPUS_COLOR_SCALE, STD_LAYOUT, TYPE_COLORS, color_background, corpus_mean_composition_years, value_count_df, get_corpus_display_name, get_repo_name, print_heading, resolve_dir
Show source
CORPUS_PATH = os.path.abspath(os.path.join('..', '..'))
ANNOTATED_ONLY = os.getenv("ANNOTATED_ONLY", "True").lower() in ('true', '1', 't')
print_heading("Notebook settings")
print(f"CORPUS_PATH: {CORPUS_PATH!r}")
print(f"ANNOTATED_ONLY: {ANNOTATED_ONLY}")
CORPUS_PATH = resolve_dir(CORPUS_PATH)
Notebook settings
-----------------
CORPUS_PATH: '/home/runner/work/workflow_deployment/bach_chorales'
ANNOTATED_ONLY: False
Show source
repo = Repo(CORPUS_PATH)
print_heading("Data and software versions")
print(f"Data repo '{get_repo_name(repo)}' @ {repo.commit().hexsha[:7]}")
print(f"dimcat version {dc.__version__}")
print(f"ms3 version {ms3.__version__}")
Data and software versions
--------------------------
Data repo 'bach_chorales' @ 4e80e34
dimcat version 0.3.0
ms3 version 2.5.2
dataset = dc.Dataset()
dataset.load(directory=CORPUS_PATH, parse_tsv=False)
[default|all]
All corpora
-----------
View: This view is called 'default'. It
- excludes pieces that are not contained in the metadata,
- filters out file extensions requiring conversion (such as .xml), and
- excludes review files and folders.
has active scores measures notes
metadata view detected detected parsed detected parsed
corpus
bach_chorales yes default 361 361 361 361 361
N = 361 annotated pieces, 722 parsed dataframes.
Show data loading
all_metadata = dataset.data.metadata()
assert len(all_metadata) > 0, "No pieces selected for analysis."
print(f"Metadata covers {len(all_metadata)} of the {dataset.data.count_pieces()} scores.")
all_notes = dataset.get_facet('notes')
all_measures = dataset.get_facet('measures')
mean_composition_years = corpus_mean_composition_years(all_metadata)
chronological_order = mean_composition_years.index.to_list()
corpus_colors = dict(zip(chronological_order, CORPUS_COLOR_SCALE))
corpus_names = {corp: get_corpus_display_name(corp) for corp in chronological_order}
chronological_corpus_names = list(corpus_names.values())
corpus_name_colors = {corpus_names[corp]: color for corp, color in corpus_colors.items()}
Metadata covers 361 of the 361 scores.
Composition dates#
This section relies on the dataset’s metadata.
valid_composed_start = pd.to_numeric(all_metadata.composed_start, errors='coerce')
valid_composed_end = pd.to_numeric(all_metadata.composed_end, errors='coerce')
print(f"Composition dates range from {int(valid_composed_start.min())} {valid_composed_start.idxmin()} "
f"to {int(valid_composed_end.max())} {valid_composed_end.idxmax()}.")
Composition dates range from 1707 ('bach_chorales', '001 Aus meines Herzens Grunde') to 1748 ('bach_chorales', '001 Aus meines Herzens Grunde').
Mean composition years per corpus#
Show source
summary = all_metadata.copy()
summary.length_qb = all_measures.groupby(level=[0,1]).act_dur.sum() * 4.0
summary = pd.concat([summary,
all_notes.groupby(level=[0,1]).size().rename('notes'),
], axis=1)
bar_data = pd.concat([mean_composition_years.rename('year'),
summary.groupby(level='corpus').size().rename('pieces')],
axis=1
).reset_index()
fig = px.bar(bar_data, x='year', y='pieces', color='corpus',
color_discrete_map=corpus_colors,
)
fig.update_traces(width=5)
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.update_traces(width=5)
Composition years histogram#
Show source
hist_data = summary.reset_index()
hist_data.corpus = hist_data.corpus.map(corpus_names)
fig = px.histogram(hist_data, x='composed_end', color='corpus',
labels=dict(composed_end='decade',
count='pieces',
),
color_discrete_map=corpus_name_colors,
)
fig.update_traces(xbins=dict(
size=10
))
fig.update_layout(**STD_LAYOUT)
fig.update_yaxes(gridcolor='lightgrey')
fig.show()
Dimensions#
Overview#
Show source
corpus_metadata = summary.groupby(level=0)
n_pieces = corpus_metadata.size().rename('pieces')
absolute_numbers = dict(
measures = corpus_metadata.last_mn.sum(),
length = corpus_metadata.length_qb.sum(),
notes = corpus_metadata.notes.sum(),
labels = corpus_metadata.label_count.sum(),
)
absolute = pd.DataFrame.from_dict(absolute_numbers)
absolute = pd.concat([n_pieces, absolute], axis=1)
sum_row = pd.DataFrame(absolute.sum(), columns=['sum']).T
absolute = pd.concat([absolute, sum_row])
relative = absolute.div(n_pieces, axis=0)
complete_summary = pd.concat([absolute, relative, absolute.iloc[:1,2:].div(absolute.measures, axis=0)], axis=1, keys=['absolute', 'per piece', 'per measure'])
complete_summary = complete_summary.apply(pd.to_numeric).round(2)
complete_summary.index = complete_summary.index.map(dict(corpus_names, sum='sum'))
complete_summary
absolute | per piece | per measure | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pieces | measures | length | notes | labels | pieces | measures | length | notes | labels | length | notes | labels | |
Bach Chorales | 361 | 5414 | 19377.0 | 84375 | 0 | 1.0 | 15.0 | 53.68 | 233.73 | 0.0 | 3.58 | 15.58 | 0.0 |
sum | 361 | 5414 | 19377.0 | 84375 | 0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Measures#
print(f"{len(all_measures.index)} measures over {len(all_measures.groupby(level=[0,1]))} files.")
all_measures.head()
5412 measures over 361 files.
mc | mn | quarterbeats | duration_qb | keysig | timesig | act_dur | mc_offset | numbering_offset | dont_count | barline | breaks | repeats | next | quarterbeats_all_endings | volta | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
corpus | fname | interval | ||||||||||||||||
bach_chorales | 001 Aus meines Herzens Grunde | [0.0, 1.0) | 1 | 1 | 0 | 1.0 | 1 | 3/4 | 1/4 | 1/2 | <NA> | <NA> | <NA> | <NA> | firstMeasure | (2,) | NaN | <NA> |
[1.0, 4.0) | 2 | 2 | 1 | 3.0 | 1 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (3,) | NaN | <NA> | ||
[4.0, 7.0) | 3 | 3 | 4 | 3.0 | 1 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (4,) | NaN | <NA> | ||
[7.0, 10.0) | 4 | 4 | 7 | 3.0 | 1 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (5,) | NaN | <NA> | ||
[10.0, 13.0) | 5 | 5 | 10 | 3.0 | 1 | 3/4 | 3/4 | 0 | <NA> | <NA> | <NA> | <NA> | <NA> | (6,) | NaN | <NA> |
print("Distribution of time signatures per XML measure (MC):")
all_measures.timesig.value_counts(dropna=False)
Distribution of time signatures per XML measure (MC):
4/4 4559
3/4 829
3/2 24
Name: timesig, dtype: int64
Harmony labels#
All symbols, independent of the local key (the mode of which changes their semantics).
try:
all_annotations = dataset.get_facet('expanded')
except Exception:
all_annotations = pd.DataFrame()
n_annotations = len(all_annotations.index)
includes_annotations = n_annotations > 0
if includes_annotations:
display(all_annotations.head())
print(f"Concatenated annotation tables contains {all_annotations.shape[0]} rows.")
no_chord = all_annotations.root.isna()
if no_chord.sum() > 0:
print(f"{no_chord.sum()} of them are not chords. Their values are: {all_annotations.label[no_chord].value_counts(dropna=False).to_dict()}")
all_chords = all_annotations[~no_chord].copy()
print(f"Dataset contains {all_chords.shape[0]} tokens and {len(all_chords.chord.unique())} types over {len(all_chords.groupby(level=[0,1]))} documents.")
all_annotations['corpus_name'] = all_annotations.index.get_level_values(0).map(get_corpus_display_name)
all_chords['corpus_name'] = all_chords.index.get_level_values(0).map(get_corpus_display_name)
else:
print(f"Dataset contains no annotations.")
Dataset contains no annotations.